Battery Charge Equalizer System

Extending battery life and performance in large battery arrays

A battery charge equalizer developed at NASA's Johnson Space Center provides individual cell charging in multi-cell battery strings using a minimum number of transformers. By effectively keeping all the cells in a multi-cell string at the same charge state, this technology maximizes the battery’s life and performance. Designed to augment a simple high-current charger that supplies overall battery system energy, the innovation achieves equalization without wasting energy or creating excess heat. NASA's battery charge equalizer complements existing high-voltage chargers and instrumentation systems and offers safe and low-cost management for lithium-ion (Li-ion) batteries used in electric vehicles and other next-generation renewable energy applications.

BENEFITS

- **Advanced equalization**—charges specific individual cells, compared to traditional methods that charge the entire string then balance the charge by discharging a subset of the string
- **Safe**—features a fail-safe operation and built-in electrical isolation from the main charge circuit
- **Fast**—identifies and charges only the cells that need charging, greatly reducing charge time
- **Highly efficient**—wastes no energy from discharging cells through resistors and other regulators
- **Extended battery life**—maintains and manages battery charge state, increasing individual battery
NASA's Technology Transfer Program
pursues the widest possible applications
of agency technology to benefit US
citizens. Through partnerships and
licensing agreements with industry,
the program ensures that NASA's
investments in pioneering research find
secondary uses that benefit the economy,
create jobs, and improve quality of life.

THE TECHNOLOGY

The innovation consists of a transformer array connected to a battery array through rectification and filtering circuits. The transformer array is connected to a drive circuit and a timing and control circuit, which enables individual battery cells or cell banks to be charged. The timing and control circuit connects to a charge controller that uses battery instrumentation to determine which battery bank to charge.

The system is ultra lightweight because it uses much fewer than one transformer per battery cell. For instance, 40 battery cells can be balanced with an array of just five transformers. NASA Johnson's innovation can charge an individual cell bank at the same time that the main battery charger is charging the high-voltage battery system.

Conventional equalization techniques require complex and costly electrical circuitry to achieve cell monitoring and balancing. Further, such techniques waste the energy from the most charged cells through a dummy resistive load (regulator), which is inefficient and generates excess heat.

In contrast, NASA Johnson's innovation equalizes battery strings by selectively charging only those cells that need it rather than discharging the entire multi-cell string into heat-generating regulators. The technology maintains battery state-of-charge to improve battery life and performance. In addition, the technology provides a fail-safe operation and a novel built-in electrical isolation for the main charge circuit, further improving the safety of high-voltage Li-ion batteries.

APPLICATIONS

The technology has several potential applications:

- Electric vehicles (EVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs)
- Stationary power systems
- Space mission critical battery systems
- Grid energy storage
- Uninterruptible power supply (UPS) systems
- Electric utility storage for renewable energy systems

The technology has applications in both electric automotive equipment and grid energy storage.

More Information

National Aeronautics and Space Administration
Michelle P. Lewis
Johnson Space Center
2101 NASA Parkway
Houston, TX 77058
281.483.3809
jsc-techtran@mail.nasa.gov
http://technology.nasa.gov/

www.nasa.gov

NP-2014-08-1138-HQ