

National Aeronautics and Space Administration

TECHNOLOGY SOLUTION

Materials and Coatings

Particle Contamination Mitigation Methods

Unique surface properties such as increased hydrophobicity and self-cleaning

NASA's Langley Research Center researchers offer you methods for particle contamination mitigation. The methods were developed for exploration of surfaces such as Moon, Mars, and asteroids. During past missions, lunar dust caused an array of issues including compromised seals, clogged filters, abraded visors and space suit surfaces, and was a significant health concern. NASA's novel methods for particle contamination mitigation include both controlled chemical and topographical modifications. These methods offer a wealth of applications and commercial opportunities. The benefits include films, coatings, and surface treatments with antifouling, dust resistance, hydrophobic to superhydrophic, low adhesion/friction, and self-cleaning characteristics. NASA is seeking development partners.

BENEFITS

- Antifouling
- Dust resistant
- Hydrophobic to superhydrophobic
- Low adhesion/friction
- Self-cleaning

APPLICATIONS

The technology has several potential applications:

- Biological templating
- Biomedical devices
- Corrosion and stain resistance
- Drag reduction
- Reduced ice and water adhesion
- Reduced insect adhesion on aircraft/ automobiles
- Marine antifouling coatings
- Microfluidics
- Particle and biological contaminant mitigation
- Self-cleaning of many kinds of surfaces
- Sensors
- Surface-specific chemical sensing

THE TECHNOLOGY

The following methods can be used individually or in combination to generate superhydrophobic surfaces:

Synthesis of novel copolyimide oxetanes with unique surface properties

The technology is the synthesis of a polyimide coating or film with a modified surface chemistry shown in Figure 1. A minor amount of an oxetane reactant containing fluorine is added to the polyimide, and the oxetane preferentially migrates to the surface, enabling relatively high concentrations of fluorine at the surface, without compromising the functional performance of the bulk of the polymide coating/film.

The copolymers exhibit mitigation of particle adhesion and fouling from exposure to various particulate and biological contaminants and exhibit reduced surface energy and increased surface fluorine content at extremely low oxetane loadings relative to the imide matrix (see Figure 2). Additionally, the short fluorinated carbon chains do not bioaccumulate, reducing the environmental impact of these materials.

Modifying surface energy via laser ablative surface patterning

This method uses a laser to create nanoscale patterns in the surface of a material to increase the hydrophobicity of the surface (see Figure 2). The benefits of hydrophobic surfaces include decreases in friction and increases in self-cleaning properties. This is an advantageous method of surface modification because it is fast and single-step, promises to be scalable, requires no chemicals, could be applied to a variety of materials, and does not require a planar surface for patterning.

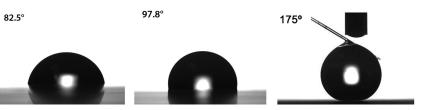


FIGURE 2 - Water droplet with varying surface modifications. Image Credit: NASA

National Aeronautics and Space Administration Agency Licensing Concierge

Langley Research Center

Mail Stop 020 Hampton, VA 23681 202-358-7432 Agency-Patent-Licensing@mail.nasa.gov

www.nasa.gov

NP-2014-09-1255-HQ

facto-official artist

FIGURE 1 - Chemical structure of copolyimide oxetane

PUBLICATIONS

Patent No: 8,987,632; 9,822,088; 10,259,077; 10,626,098; 11,130,742; 11,760,738

technology.nasa.gov

NASA's Technology Transfer Program pursues the widest possible applications of agency technology to benefit US citizens. Through partnerships and licensing agreements with industry, the program ensures that NASA's investments in pioneering research find secondary uses that benefit the economy, create jobs, and improve quality of life.

LAR-17769-1, LAR-18026-1, LAR-17769-2, LAR-18026-2, LAR-18026-3, LAR-18026-4, LAR-TOPS-97