Wafer-scale membrane release process

manufacturing
Wafer-scale membrane release process (GSC-TOPS-231)
This innovation consists of a process of fabricating thin dielectric membranes constructed with a silicon-on-insulator wafer material.
Overview
Precise measurements utilizing sensitive instruments may require thermally managed detectors. Therefore, thermal insulation of the detector is essential to its performance. To maintain critical signal to noise ratio, there is a need for larger thermal isolation structures. Due to high detector filling fraction limits, these isolation structures may be thinner, less mechanically robust thermal and more prone to breakage during fabrication. This innovation is a process that fabricates thin dielectric membranes with high mechanical yields. These dielectric membranes may be perforated and include thermal isolation structures.

The Technology
The process of forming thermal insulation wafer begins with layering a photo resist pattern on an aluminum coated substrate. After the aluminum is etched, a temporary adhesive is applied to the photo resist and substrate. Next, the construction undergoes wafer scale bonding to a silicon insulator. The silicon insulator is then patterned and etched down to the buried oxide layer. The temporary adhesive is then dissolved in acetone. The acetone is diluted with non-polar solvents which are then removed via critical drying. Goddard Space Flight Center has produced multiple arrays of crystalline silicon membranes that were 450 nm thick and were isolated from a silicon support structure by thermal isolation structures that were 30 microns thick and 5 microns long. The largest membranes, among which had 100 % mechanical yield, had an aerial footprint of 1.6 mm x 1.4 mm.
Neutron star Interior Composition Explorer (NICER)
Benefits
  • Large mechanical yield
  • Minimizes wafer handling

Applications
  • Bolometric detectors
  • Thermally insulated sensors
Technology Details

manufacturing
GSC-TOPS-231
GSC-17897-1
Similar Results
Sansec Sensors
Wireless Temperature Sensor Having No Electrical Connections
This technology is a new sensor made up of dielectric materials tuned to accurately measure a variable and wide range of temperatures. The sensor is wireless and is powered by an external magnetic field. As the temperature changes, the dielectric material changes its signature magnetic response and the change is detected by a magnetic field response sensor. Applications for this technology are temperature sensors for non-conductive surfaces where the conditions or operations require a robust and wireless sensor.
CHIEFS Material
Multilayered Fire Protection System
The Multilayered Fire Protection system uses technology from the space craft flexible heat shield for future planetary missions. By optimizing this material for the fire environment, utilizing heat shield test methods, and experimenting with different materials, the NASA team developed a multilayered fire protection system. This system includes an outer textile layer which reflects over 90 percent of the radiant heat, an insulated layer which protects against convective heat and hot gases, and a non-porous film layer which is a gas barrier layer.
Computer-implemented energy depletion radiation shielding
The difference between Layered Energy Depletion Radiation Shielding (LEDRS) and Stacked Energy Depletion Radiation Shielding (SEDRS) is how the piece of matter, or shield, is analyzed as radiation passes through the matter. SEDRS involves using a defined and ordered stack of layers of shielding with different material properties such that the thickness and chemical properties of each material maximizes the absorption of energy from the radiation particles that are most damaging to the target. The SEDRS shielding method aims to provide the maximum level of energy absorption while still keeping shielding mass and volume low. The process of LEDRS involves using layers of shielding material such that the thickness of each material is designed to absorb the maximum amount of energy from the radiation particles that are most damaging to the target after subsequent layers of shielding. The more energy is absorbed by the shielding material, the less energy will be deposited in the target minimizing the required mass to achieve a resulting lower dose for a given geometrical feature. The LEDRS shielding method aims to provide the maximum level of energy absorption. The process for designing LEDRS views potential radiation shields as a cascade of effects from each shielding layer to the next and is helpful for investigating the particular effects of each layer. SEDRS and LEDRS can improve any technology that relies on the controlled manipulation of a radiation field by interaction with a material element.
Pill bottles
Wireless Sensor for Pharmaceutical Packaging and Monitoring Applications
The SansEC sensor is an electrically open circuit without electrical connections. Having a device without circuits eliminates a common failure source of electrical systems. It consists of a uniquely designed thin-film electrically conductive geometric pattern that stores energy in both electric and magnetic fields. When wirelessly interrogated from the portable data acquisition system, the sensor becomes electrically active and emits a wireless response. The magnetic field response attributes of frequency, amplitude, and bandwidth of the inductor correspond to the physical property states measured by the sensor. Container damage, temperature, spoilage, or substance level is detected by changes in resonant frequency read by the accompanying magnetic field data acquisition system. A unique feature of the sensor is its ability to measure more than one physical attribute at the same time. In addition, by eliminating electrical connections, damage to any area of the sensor will not prevent it from being powered or interrogated.
Spacecraft Reentry
Robust Sensors Detect Material Ablation and Temperature Changes
Glenn's breakthrough technology introduces batch-fabricated, miniature sensors embedded and distributed over a large surface area of a material or product during the manufacturing process. The sensors can be utilized for test instrumentation or as an integrated in-situ monitoring system. This integrated manufacturing approach preserves the structural and mechanical system integrity by eliminating the antiquated plug-in approach, invasive machining, manual insertion, and gluing processes currently required to implant sensors into a material. The sensor ladder network of resistors and capacitors breaks down as result of the thermo-physical effects caused by temperature, shock, radiation, corrosion, or other reactions, causing a change in the electrical properties. A processor interprets these changes in the electrical properties and generates a high-resolution, large-area surface profile. The profile demonstrates the amount or rate of material deterioration and temperature change, and is used to optimize geometric structural design, develop materials, predict performance, and make decisions. These sensors play an important role as industries work to realize material performance and product design. This type of monitoring is ideal for infrastructures, nuclear enclosures, or any system susceptible to surface deterioration.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo