Sucrose Treated Carbon Nanotube and Graphene Yarns and Woven Sheets

materials and coatings
Sucrose Treated Carbon Nanotube and Graphene Yarns and Woven Sheets (LAR-TOPS-172)
Cost-effective method to consolidate carbon nanotube and graphene yarns and woven sheets.
Overview
NASA Langley Research Center has developed a method to consolidate carbon nanotube yarns and woven sheets and graphene sheets via the dehydration of sucrose. The resulting materials are lightweight and high strength. Sucrose is relatively inexpensive and readily available, therefore the process is cost-effective.

The Technology
Various aerospace and terrestrial applications require lightweight materials with very high mechanical properties. Carbon nanotubes and graphene sheets have been found to be such materials. In addition, they have been found to have excellent electrical and thermal transport properties. However, retaining the excellent nanoscale properties, particularly mechanical and thermal transport, in bulk materials has proven to be challenging. In order for the nanotubes to be used in applications, they must be spun into yarn(s), sheet(s), and other macroscopic forms introducing relatively weak tube-to-tube and inter-bundle bonds. Also, the nanotubes tend to be entangled, and they therefore do not all contribute in load bearing. Weak coupling at tube and bundle interfaces also leads to mechanical and thermal transport that are much lower than would be expected from the nanoscale carbon nanotube or graphene properties. This invention is for consolidated carbon nanotube or graphene yarns and woven sheets via the formation of a carbon binder formed from the dehydration of sucrose. The resulting materials are lightweight and possess a high specific modulus and/or strength on the macro-scale. Sucrose is relatively inexpensive and readily available, leading to a cost-effective route for achieving bulk nanotube/graphene based multifunctional material formats.
Mars Habitat FE-SEM images of a sucrose treated CNT yarn at various magnifications after dehydration process
Benefits
  • Produces materials with greater than 30% increase in tensile properties compared to starting materials
  • Method uses an inexpensive base material, sucrose, for the manufacturing process
  • Dielectric and electrical properties of the yarns and sheets can be tailored

Applications
  • Structural materials for aerospace vehicles
  • Materials for lightweight, mechanically robust consumer devices
  • Materials for space habitats
Technology Details

materials and coatings
LAR-TOPS-172
LAR-18185-1
9,695,531
Similar Results
Examples of anticipated applications of holey nanocarbons: sensors, energy storage, water separation, etc.
Holey Carbon Allotropes
This invention is for scalable methods that allows preparation of bulk quantities of holey nanocarbons with holes ranging from a few to over 100 nm in diameter. The first method uses metal particles as a catalyst (silver, copper, e.g.) and offers a wider range of hole diameter. The second method is free of catalysts altogether and offers more rapid processing in a single step with minimal product work-up requirements and does not require solvents, catalysts, flammable gases, additional chemical agents, or electrolysis. The process requires only commercially available materials and standard laboratory equipment; and, it is scalable. Properties that can be controlled include: surface area, pore volume, mechanical properties, electrical conductivity, and thermal conductivity.
solar panels
Dispersion of Carbon Nanotubes in Polymers
The technology portfolio spans several methods for dispersion and processing of CNTs in polymer resins and composites. CNT/resin systems with high dispersion and long-term stability are provided by three general approaches. One method relies on mechanical dispersion by sonication simultaneous with partial polymerization to increase the resin viscosity to maintain dispersion and enable further polymer processing of the CNT blend into films and other articles. Another approach relies on what is termed donor acceptor bonding, which essentially is a dipole bond created on the CNT/resin interface to maintain dispersion and stability of the CNT/resin blend. This dispersion method also provides advantages in mechanical properties of processed composites due to the interface characteristics. A range of polymer types can be used, including polymethyl methacrylate, polyimide, polyethylene, and others. An additional dry blending approach provides advantages for a variety of thermoplastic and thermoset systems. Use of ball mill mixing achieves effective blending and dispersion of the CNT, even at high loadings. Further processing steps using injection molding or similar melt processing methods have yielded CNT/ polymer composites with a range of useful electronic, optical, and mechanical properties.
NASA free image library
https://images.nasa.gov/details/iss038e024901
Conductive Carbon Fiber Polymer Composite
The new composite developed by NASA incorporates PGS and CNTs to enhance its thermal conductivity while preserving the mechanical properties of the underlying carbon fiber polymer composite. NASA has also improved the composite manufacturing process to ensure better thermal conductivity not only on the surface, but also through the thickness of the material. This was achieved by adding perforations that enable the additives to spread through the composite. The process for developing this innovative, highly thermally conductive hybrid carbon fiber polymer composite involves several steps. Firstly, a CNT-doped polymer resin is prepared to improve the matrix's thermal conductivity, which is then infused into a carbon fiber fabric. Secondly, PGS is treated to enhance its mechanical interface with the composite. Thirdly, perforation is done on the pyrolytic graphite sheet to improve the thermal conductivity through the thickness of the material by allowing CNT-doped resin to flow and better interlaminar mechanical strength. Finally, the layup of PGS and CNT-CF polymer is optimized. Initial testing of the composite has shown significant increases in thermal conductivity compared to typical carbon fiber composites, with a more than tenfold increase. The composite also has higher thermal conductivity than aluminum alloys, with more than twice the thermal conductivity of the Aluminum 6061 typically used in the aerospace industry. For this new material, NASA has completed a proof-of-concept demonstration and work continues to use the material in a heat exchanger system and further characterize the properties including longevity and radiation impact analysis.
Scanning electron microscopic image of stretched CNT sheet modified with Polyaniline.
Conductive Polymer/Carbon Nanotube Structural Materials and Methods for Making Same
Carbon nanotubes (CNTs) show promise for multifunctional materials for a range of applications due to their outstanding combination of mechanical, electrical and thermal properties. However, these promising mechanical properties have not translated well to CNT nanocomposites fabricated by conventional methods due to the weak load transfer between tubes or tube bundles. In this invention, the carbon nanotube forms such as sheets and yarns were modified by in-situ polymerization with polyaniline, a -conjugated conductive polymer. The resulting CNT nanocomposites were subsequently post-processed to improve mechanical properties by hot pressing and carbonization. A significant improvement of mechanical properties of the polyaniline/carbon nanotube nanocomposites was achieved through a combination of stretching, polymerization, hot pressing, and carbonization.
Nanotube
Functionalization of Single-Wall Carbon Nanotubes
In Glenn's technique, SWCNTs are dispersed in a suitable solvent, such as N-methyl pyrollidinone, and the resulting suspension is saturated with oxygen gas. A singlet oxygen sensitizer is added and the resulting mixture is irradiated under a continuous flow of oxygen for many hours. The resulting oxidized tubes are recovered by filtering the suspension, washing them, and then drying them in a vacuum oven. Singlet oxygen is a highly reactive species and is known to add to a variety of aromatic carbons. Singlet oxygen is prepared by irradiating an oxygen saturated solution with ultraviolet light in the presence of a sensitizer. This method may also be suitable for use in oxidation of multi-wall carbon nanotubes and graphenes. This is an early-stage technology requiring additional development. Glenn welcomes co-development opportunities.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo