Search

manufacturing
front image
Modular Fixturing for Assembly and Welding Applications
NASA's researchers have designed modular fixtures to address inefficiencies in time, labor, and material costs due to the need to fabricate unique, monolithic fixture bodies for different segments of the Space Launch System (SLS). Before NASA staff can configure and weld rocket sections, they must assemble modular tooling atop a large turntable with radial grooves. Supporting braces (tombstones) that form the base of the modular structure slide into radial grooves. Other extending, clamping, and joining fixtures can be variously connected to the base structure to provide circumferential support for producing conical and cylindrical structures. NASA has used the tooling to produce structures with diameters of up to 27 feet. Depending on the desired application, the base can be scaled to produce larger or smaller diameters, and the grooves can be arranged with a longitudinal arrangement for production of parts with bilateral symmetry. The development of these modular fixtures required an initial investment similar to that of a single project's tool design and fabrication costs. Once produced, only a fraction of that time/cost is required to begin all subsequent projects. NASA has used this new, adaptable tooling in the construction of several different rocket stages, proving its cost-saving capabilities.
manufacturing
Ultrasonic Stir Welding
Ultrasonic Stir Welding
Ultrasonic Stir Welding is a solid state stir welding process, meaning that the weld work piece does not melt during the welding process. The process uses a stir rod to stir the plasticized abutting surfaces of two pieces of metallic alloy that forms the weld joint. Heating is done using a specially designed induction coil. The control system has the capability to pulse the high-power ultrasonic (HPU) energy of the stir rod on and off at different rates from 1-second pulses to 60-millisecond pulses. This pulsing capability allows the stir rod to act as a mechanical device (moving and stirring plasticized nugget material) when the HPU energy is off, and allowing the energized stir rod to transfer HPU energy into the weld nugget (to reduce forces, increase stir rod life, etc.) when the HPU energy is on. The process can be used to join high-melting-temperature alloys such as titanium, Inconel, and steel.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo