enviornmental

instrumentation
ISS
Fast, Large Area, Wide Band Gap UV Photodetector
Glenn's photodetector was designed to address the shortcomings of vacuum-tube-based radiation detector systems for Cherenkov Light Detection used to facilitate manned and unmanned deep space missions and high-altitude aircraft safety. Detector systems that rely on photomultiplier tubes are not only large, they run at high voltages, have high noise levels, and require special packaging and great care when being transported. This innovation addresses the need for a smaller, lighter device that allows more space for power and payloads. This solid-state device, which is fabricated on bulk, single-crystal undoped ZnO, eliminates the need for photomultiplier tubes. It is a resistive sensor and can be fabricated using standard microfabrication processes. Interdigitated finger electrodes and contact pads are patterned using photolithography, and formed by a high-conductivity metal such as silver or platinum. It is typically operated in a half-bridge configuration and an applied electric field directs the drift of conductive electrons when the device is exposed to UV light. While the response time is dependent on electrode spacing, the wavelength is not, allowing it to be easily reconfigured to various tolerances as needed. As a result, this device is able to detect very specific kinds of UV light, making it an ideal choice for a variety of industries that rely on accurate, high-speed photodetection.
environment
Activated Metal Treatment System (AMTS) for Paints
Activated Metal Treatment System (AMTS) for Paints
PCBs have been shown to cause cancer in animals and to have other adverse effects on immune, reproductive, nervous, and endocrine systems. Although the production of PCBs in the United States has been banned since the late 1970s, many surfaces are still coated with PCB-laden paints. The presence of PCBs in paints adds complexity and expense for disposal. Some treatment methods (e.g., use of solvents, physical removal via scraping) are capable of removing PCBs from surfaces, but these technologies create a new waste stream that must be treated. Other methods, like incineration, can destroy the PCBs but destroy the painted structure as well, preventing reuse. To address limitations with traditional abatement methods for PCBs in paints, researchers at NASAs Kennedy Space Center (KSC) and the University of Central Florida have developed the Activated Metal Treatment System (AMTS) for Paints. This innovative technology consists of a solvent solution (e.g., ethanol, d-limonene) that contains an activated zero-valent metal. AMTS is first applied to the painted surface either using spray-on techniques or wipe-on techniques. The solution then extracts the PCBs from the paint. The extracted PCBs react with the microscale activated metal and are degraded into benign by-products. This technology can be applied without removing the paint or dismantling the painted structure. In addition, the surface can be reused following treatment.
environment
Water flowing through hands
Microwave-Based Water Decontamination System
Bacterial contamination of water systems used in microgravity is a major issue for NASA because biofilms can clog or interfere with water system functions and bacterial ingestion can be harmful to astronaut health. To address this problem, NASA innovators developed a microwave based technology to purify contaminated water by eradicating and eliminating bacteria that grows in systems that generate potable water, in equipment utilizing cooling loops and heat exchangers, and removing bacterial contamination that is present on a variety of surfaces. This decontamination system is chemical free and requires minimal to no consumables. Initial testing identified a specific microwave frequency band and exposure times for killing bacteria (Burkholderia cepacia) and biofilm. Test results show that exposing static water to microwave energy for 90 seconds can effectively kill waterborne bacteria and biofilm within a water filtration system. Additional testing, using a circulating water test bed, demonstrated that microwave energy at the selected frequency can effectively eradicate waterborne bacteria within 30 seconds. This technology could be further developed into a portable, lightweight system for use in remote locations as well as commercial space applications. The microwave decontamination system could also be added to existing water systems to extend the life of the system.
communications
Satellites Purple Sky
Terahertz Quantum Cascade Laser Source
THz occupies the frequency gap between microwaves and infrared light waves. THz produces a frequency that is both coherent and spectrally broad, so such images can contain far more information than a conventional image formed with a single-frequency source. Although THz frequency can penetrate fabrics and plastics, it is non-ionizing and therefore harmless to living tissue or DNA, making it very valuable for imaging and screening applications. Scientists have attempted to find practical ways to use a QCL as a tunable source for THz frequencies for a variety of applications, but until now, have been unable to overcome obstacles in cost and fabrication. Glenn's innovation is a THz QCL source (range 1 to 5 THz) based on a passive waveguide tuning mechanism that can use the full bandwidth of a broadband THz QCL and produce a vast number of frequency channels. In Glenns process, a tunable QCL is coupled to a grating router, which consists of an appropriately configured linear dielectric array. The grating router receives a THz frequency from the QCL and generates a high density of THz frequencies. The output of the grating router enters an on/off switching waveguide controller, which is configured to select one desired THz frequency. This desired frequency is then fed into a waveguide multiplexer, which combines the output ports of the controller into a single signal for transmission. Glenn's novel technology unlocks the potential for THz frequencies to revolutionize sensing and imaging applications across a wide range of industries. This is an early-stage technology requiring additional development, and Glenn welcomes co-development opportunities.
environment
Glass of purified water
Pre-Treatment Solution for Water Recovery
NASA Johnson Space Center developed, tested and implemented a pre-treatment solution with the purpose of pre-treating urine before further processing of it in the International Space Station (ISS) distiller. The solution increased the water recovery rate in the ISS distiller from 75 to 90 percent, doubled the volume of feed processed per cycle, reduced the volume of brine by half, and eliminated the formation of precipitate up to 90% water recovery. The benefits extend to other steps in the process. For example, less precipitate has the potential to reduce the frequency of changing the filters and the number of filters used per gallon filtered during the distillation stage. Furthermore, this pre-treatment solution prevents bacterial and fungal growth during storage. Although the solution was developed for the ISS distiller, the technology can potentially be used on Earth to pre-treat contaminated water that is usually treated with a chemical solution to recover water from organic laden, high-salinity wastewaters. The technology is a simple additive process that can be scaled to fit processing demands. The pre-treatment solution has the potential to improve water recovery in many applications such as: desalination plants, brackish water treatment, mining water treatment and more. The technology can also be used in the transporting or storage of waste or other water sources due to the technology's ability to prevent microbial growth. This NASA Technology is available for your company to license and develop into a commercial product. NASA does not manufacture products for commercial sale.
environment
Robonaut 2: Hazardous Environments
Robonaut 2: Hazardous Environments
Robonaut 2 (R2) has the capability of functioning autonomously or it can be controlled by direct teleoperations, which is advantageous for hazardous environments. When functioning autonomously, R2 understands what to do and how to do it based on sensory input. R2's torso holds the control system while the visor holds several cameras that are incorporated into the visual perception system. With these capabilities, R2 can reduce or eliminate the need for humans to be exposed to dangerous environments. R2 also has a very rugged four-wheel base called the Centaur 2. The Centaur 2 base can lower or raise itself to and from the ground and turn its wheels in any direction, allowing it to turn in place and drive forward or sideways. This enables the R2 to enter hazardous areas or tackle difficult terrain without endangering its human operator. Robonaut 2 as a whole, or some of its components, can be an invaluable tool for land mine detection, bomb disposal, search and rescue, waste recycling, medical quarantined area, and so much more. The suite of technologies provides an ability to manipulate tools to help with a task, or it can tackle many tasks in a row, where a standard robot may not have the dexterity or sensing capability to get the job done. R2 could pick through nuclear waste, measure toxicity levels, and survey areas too remote or dangerous for human inspection. R2 could deal with improvised explosive devices, detect and dispose of bombs or landmines, and operate equipment that can break through walls or doors.
mechanical and fluid systems
Harsh Environment Protective Housings
Harsh Environment Protective Housings
These connectors are designed to be used in harsh environments and to withstand rough handling, such as being stepped on or rolled over by wheelbarrows or light vehicles. If the demated connectors are dropped or placed on the ground, the end caps will shield them from damage and contaminants. When mated, the seal between the housings and end caps keeps contaminants out. The end caps are latched to the housings so that the caps cannot be unintentionally opened; this latch can be opened only by depressing the levers. The spring used to open or close the cap is constructed of a shape memory alloy, allowing the cap to be opened and closed an almost infinite number of times. The cap actuation levers are designed so that only a 3/4-inch pull is needed to open the cap a full 190 degrees. The housings can accept most commercial-off-the-shelf electrical or fluid connectors (including those designed for cryogenics), thus eliminating the need for specialized connectors in hostile environments. The housings can also be grounded and scaled up or down to accommodate connectors of different sizes. The housings can be constructed of steel, aluminum, composites, or even plastic, depending on the environment in which they will be used and material cost constraints.
environment
front
Tool for Rapid Identification of TCE in Plants
Plant uptake of TCE from contaminated groundwater is a well-known phenomenon. During the photosynthesis process, plants metabolize the TCE into a byproduct called trichloroacetic acid (TCAA). TCAA has been found to be a good indicator (or surrogate) molecule for the presence of TCE because it is more stable than TCE in plants. The hyperspectral estimator is being designed to detect TCAA. The method uses a white light that is directed at the surface of a plant's leaf. The interaction between the light and the leaf produces spectral signatures that are captured using a detector. A processor that will be coupled to the detector will compare these signatures to a library/database of signatures known to be indicators of the presence of TCAA (and thus TCE). The figure below on the left shows hyperspectral images captured using the method for leaves dosed with TCE over various time periods. These images are examples of response signatures that will eventually be built into the device's reference library/database. Proof-of-concept testing has shown that the hyperspectral estimator is capable of estimating the presence/absence of TCE in plant leaves with an accuracy of 80%. Efforts are now underway to further improve the accuracy of this method and to prototype the technology. The figure below on the right shows a diagram of the planned device.
environment
Wastewater Treatment and Remediation
NASA's system was developed for smaller-scale, space-based applications. However, the technology is scalable for larger industrial and municipal water treatment applications. Implementation of the Ammonia Recovery System could significantly reduce nitrogen content from water treatment processes, meaningfully improving the quality of water. This system offers a novel way to reduce nitrogen water pollutants, while allowing for the nitrogen to be collected and reused- reducing environmental and public health risks and providing an environmentally friendly fertilizer option. NASAs environmental solutions work to sustain life on earth through space based technology The adaptable nature of this system gives it potentially broad applications in a wide variety of industries; it is particularly ideal for on-site remediation of wastewater in places like condo complexes, hotels and water parks. Current methods of ammonia recovery could not meet NASAs mission requirements, so a new process was devised to optimize for high ammonia selectivity, simplicity, low volume , low power usage and zero contaminants in the effluent. To do this, NASA designed a novel regenerable struvite-formation system for the capture of ammonia. This system has three primary functions: 1) Removal of ammonia from wastewater using a media that is highly selective for ammonia 2) Capture of the ammonia for later use (e.g., as a fertilizer) 3) Regeneration of the capture media for reuse in the system
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo