Search

mechanical and fluid systems
Spacecraft Atmosphere Carbon Dioxide (CO<sub>2</sub>) Capture via Deposition
Spacecraft Atmosphere Carbon Dioxide (CO<sub>2</sub>) Capture via Deposition is an air revitalization architecture that utilizes the different physical phase-change properties of International Space Station (ISS) cabin-like constituents (nitrogen, oxygen, carbon dioxide, water vapor, and various trace contaminants) to selectively separate constituents of interest, such as carbon dioxide and trace contaminants. As the main target constituent is CO<sub>2</sub>, which does not condense in atmospheric conditions, this architecture is referred to as CO<sub>2</sub> deposition, or CDep. The technology addresses future CO<sub>2</sub> removal and life support system needs using a completely different technical approach than currently employed on the ISS. Instead of using a sorbent, this technology utilizes cooling to directly freeze CO<sub>2</sub> out of the atmosphere. Specifically, it involves forcing a phase change of CO<sub>2</sub> from the cabin atmosphere by solidifying it onto a cold surface. The technology for spacecraft atmosphere CO<sub>2</sub> capture uses sequential heat exchangers to cool airflow from the spacecraft atmosphere, and uses deposition coolers that can operate in a deposition mode, in which CO<sub>2</sub> from the airflow is deposited to generate said CO<sub>2</sub> depleted air, and a sublimation mode in which deposited CO<sub>2</sub> is sublimated into CO<sub>2</sub> gas. The system can alternately cycle between the deposition mode and the sublimation mode. A deposition system can also remove humidity in addition to CO<sub>2</sub> via a multi-stage process, and can also significantly assist in controlling the trace contaminants.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo