Broadband Metamaterial Termination for Planar Superconducting Transmission Line Circuits

Electrical and Electronics
Broadband Metamaterial Termination for Planar Superconducting Transmission Line Circuits (GSC-TOPS-373)
Low Reflectance and Small Physical Footprint for an Adiabatic Absorber
Overview
NASA scientists at Goddard Space Flight Center have developed a broadband metamaterial termination for planar superconducting transmission line circuits. This technology was created as part of a collaborative effort with researchers on the Cosmology Large Angular Scale Surveyor (CLASS) microwave telescope array. Key improvements included adding an adiabatic absorber at the magic tee and vialess crossovers, which significantly reduces reflectance and sensitivity to fabrication variations. These changes ensured better impedance matching across the system, enhancing the fidelity and performance of the microwave circuits. The redesign aimed to address the limitations of earlier narrowband, resonant-tuned terminations that were highly sensitive to manufacturing tolerances, particularly at cryogenic temperatures. These traditional designs required strict control over surface resistance to meet transmission line impedance targets, which proved challenging and resulted in poor device yield at lower temperatures. This approach also provides better adaptability for high-performance microwave circuits used in astrophysical sensors and superconducting applications, where precision and reliability are paramount.

The Technology
The broadband metamaterial termination for use in planar superconducting transmission lines has been successfully demonstrated in CLASS circuit structures as an effective termination. This metamaterial implementation is fully compatible with microfabrication techniques commonly used for microwave circuitry, and its response is insensitive to geometric tolerances, material properties, and interface details of conductive elements in device fabrication. In the context of far-infrared imaging, polarimetric, and superconducting integral field unit (IFU) spectrometer arrays for astrophysics, this strategy leads to higher performance, increased device yield, and greater overall circuit density. The metamaterial termination achieves a broadband absorption response with lower reflectance in a smaller physical footprint compared to existing adiabatic structures. This absorption response demonstrates significantly lower sensitivity to fabrication tolerances, material properties, and modeling assumptions than previous designs. These characteristics are critical for cryogenic applications, but the termination can also enhance the performance of room-temperature planar transmission line structures used in microwave engineering. The termination is realized as a lossy stepped impedance transition between Nb and PdAu, which reduces the total meander length, device footprint, and sensitivity to detailed implementation. This broadband metamaterial termination is applicable in superconducting technologies, including quantum communications, computing, and sensors. It has reached Technology Readiness Level (TRL) 7 (technology demonstrated in an operational environment) and is now available for patent licensing.
Credit: NASA The upgraded CLASS 90 GHz detector pixel (a), and zoom-ins showing the Magic Tee (b) and terminated vialess crossover (c) with the revised PdAu circuit termination.  Credit: NASA
Benefits
  • High Performance: Shorter meander paths reduce signal loss and unwanted interference, making the design more efficient in RF and superconducting circuits.
  • Lower Sensitivity to Manufacturing Variations: The design is more robust against fabrication tolerances, reducing performance inconsistencies across different builds.
  • Compact Design: Achieves a smaller physical footprint than existing adiabatic structures, saving space in high-density circuits.
  • Cryogenic Compatibility: Well-suited for low-temperature applications, maintaining performance and efficiency in superconducting environments.

Applications
  • Space-Based Telescopes and Detectors: Compact, reliable terminations are crucial for cryogenic sensor arrays used in deep-space observation.
  • Superconducting Cryogenic Circuits: Reducing footprint and sensitivity is beneficial for cryogenic environments, where precise performance is critical.
  • Microwave Imaging: Better absorption for medical and security scanning technologies.
  • Advanced Metamaterial-Based Absorbers: The approach could be adapted for other electromagnetic absorption applications, such as stealth technology.
  • Quantum Computing: Improved terminations for superconducting qubits and resonators.
Technology Details

Electrical and Electronics
GSC-TOPS-373
GSC-19113-1
Núñez et al. (2023). On-sky performance of new 90 GHz detectors for the Cosmology Large Angular Scale Surveyor (CLASS). 10.48550/arXiv.2301.01417.
Similar Results
Onboard the R/V Atlantis a tangle of power and data cables awaits a busy team of scientists who will organize them
A two-way microwave power divider using microstrip transmission lines
The power divider use Klopfenstein tapered transmission lines on each output branch of the junction impedance that is matched the input port. Thus, the output lines are well matched to the input, and a reflected power of 1% can be easily achieved. Resistors are distributed along the transmission lines to provide isolation between the two output ports which prevents power of one output port from coupling to the other output port. A large amount of the power is dissipated in the resistors rather than exiting through any other ports in the system. Due to the symmetry of the design, very little power is dissipated during normal operation. The resulting power divider is operable at high bandwidths as the tapered impedance match which have no upper frequency limitation. Additionally, the tapered lines eliminate many discontinuities in the layout which in turn reduce microwave junction effects. The power divider is capable of being manufactured using known methods and may be utilized in a compact microwave spectrometer.
Satellite Starry Sky
Multimode Directional Coupler
Glenn's researchers originally created the MDC to improve the beacon sources for atmospheric propagation studies. These studies are typically conducted to test atmospheric conditions to determine the signal strength needed for satellite communications. A low-power transmitter (e.g., a beacon source) is attached to the satellite, and transmits a continuous waveform (CW) signal to a receiving station on Earth. However, when a separate frequency is desired, building a new beacon source for the transmitter on the satellite - especially one that will operate at higher frequencies - presents numerous challenges. For one, a single-frequency beacon source requires a temperature-stabilized oscillator for frequency generation separate from that provided by the spacecraft receiver. To solve such problems, Glenn's innovators fabricated the MDC from two sections of waveguide: a primary waveguide for the fundamental frequency (Ku-band), and a secondary waveguide for the harmonics (Ka-band). These sections are joined together so that precision-machined slots in the second waveguide selectively couple the harmonics, for amplification and transmission. The harmonics can then be used as an additional beacon source with very small power losses to the fundamental signal. Once the separation takes place, the second or higher harmonic can be amplified and transmitted to a station on Earth. The efficiency and performance of the MDC can be optimized through appropriate computer modeling software and currently available high-precision fabrication techniques. Without the complexity and expense involved in building separate traveling wave tube amplifiers to generate additional frequencies, Glenn's MDC enables satellites to produce multiple signals that can be received by multiple stations - a significant leap forward in satellite productivity.
Credit: NASA
High Performance, All-Metal X-Band Patch Antenna
The patch antenna consists of two radiating metal patch elements, a metal feed circuit, choke rings, several alignment spacers, a SMA connector, and a mounting lid giving the antenna a total diameter of 54 mm; small enough to fit in a coffee cup. The signal is carried between the lower patch and the circuit via a coaxial transmission structure, in which the probes are the inner conductor and the antenna structure is the outer conductor. The patch antenna is constructed entirely of metal, offering rugged physical durability while delivering superior performance. This advanced material not only enables the antenna to handle higher power loads (exceeding 10 watts) but also ensures exceptional stability under demanding conditions—outperforming standard patch antennas made with traditional dielectric materials. It is also not susceptible to the manufacturing variability incurred from using dielectrics. Ideally, this metallic design also allows for reentry and reuse across missions. The patch antenna is designed with integrated choke rings to effectively mitigate multipath signal interference, delivering an impressive front-to-back ratio of over 35 dB. Its integrated polarizer circuit enhances signal clarity and boosts overall efficiency, ensuring reliable communication in challenging environments. With support for both right- and left-handed circular polarization, the antenna achieves a co-polarization peak gain of 9 dBi and an axial ratio of less than 3 dB within a wide 50-degree orientation range. These advanced features provide superior signal performance and consistent clarity across diverse applications. Although designed for space and planetary exploration applications, the antenna may also be valuable for terrestrial use cases with rugged conditions. The X-band patch antenna is at technology readiness level (TRL) 5 (component and/or breadboard validation in relevant environment) and is available for patent licensing.
Credit: NASA
Non-Magnetic Absorptive Material for Microwave to Far-Infrared Applications
The electromagnetic properties of the material are engineered by optimizing its complex dielectric function through the volume filling fraction of its components. A low-index polymeric binder, such as thermal polymers and epoxies, serves as the host medium to minimize reflectance in the conductively loaded dielectric media. To ensure thermal compatibility with metal substrates in cryogenic environments, dielectric powders are incorporated to match thermal expansion. Additionally, alumina frit compensates for thermal contraction at cryogenic temperatures, while non-magnetic conductive particles such as bronze, carbon allotropes, and degenerately doped silicon help tailor the material’s dielectric response. To enhance performance, small-particle scatterers reduce heat capacity and limit resonant dispersion, while dirty alloys stabilize resistance under conductive loading. The formulation incorporates reststrahlen materials and supports applications across the microwave to terahertz range, making it suitable for baffles, Lyot stops, and optical terminations, or as a primer for enhancing near-infrared and visible black paints. This high-emissivity, non-magnetic coating is designed for microwave to far-infrared instrumentation in space and cryogenic systems. It also benefits industries producing absorptive epoxies, EMI/EMC shielding, and quantum sensing components. It has reached Technology Readiness Level (TRL) 5 (component validation in relevant environment) and is now available for patent licensing.
Airport Control Tower
The Teletenna - A Hybrid Telescope Antenna System
Initially developed for missions to Mars, Teletenna integrates RF and optical communication technologies to transmit data from deep space to Earth at extremely high speeds. The system combines a co-boresighted telescope and a Ka-band RF antenna to minimize system mass and enhance performance. Designed with an optimal focal length-to-diameter ratio, the apparatus features a classical Cassegrain geometry, including a sub-reflector in front of the RF feed which acts as a mirror for the optical signal while being transparent to the RF signal. The apparatus also mechanically and thermally isolates the RF reflector system from the optics to offer maximum stability. Teletenna was created to overcome two significant challenges to DSOC: 1) laser inefficiency due to poor alignment during spacecraft disturbances and 2) performance degradation due to lack of rigidity in vibrational environments (such as space). The first challenge is addressed by the telescope portion of this technology, which facilitates the acquisition and maintenance of the link with ease - even in less than ideal conditions. The second challenge is addressed by rigidly fixing the RF reflector to the spacecraft body and attaching the optical section to a vibration isolation platform. The result is a device that can point to within 0.5 degrees of the sun (traditional optical systems are limited to 3 degrees), allowing for approximately 20 extra days of contact time between Earth and Mars. By combining RF and optical communications, this breakthrough innovation has the power to transform communications as we know it. Glenn welcomes co-development opportunities.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo X Logo Linkedin Logo Youtube Logo