Grid-Oriented Normalization for Analysis of Spherical Areas (GONASA)

Information Technology and Software
Grid-Oriented Normalization for Analysis of Spherical Areas (GONASA) (GSC-TOPS-390)
Accurate and automated measurement of features on spherical surfaces
Overview
Accurate measurement and characterization of surface features on spherical objects, such as planets and moons, is a persistent challenge in planetary science, remote sensing, and atmospheric research. When viewed through traditional two-dimensional imaging, these spherical surfaces become distorted, particularly towards the edges, making it difficult to accurately measure important characteristics like area, perimeter, orientation, and spatial distribution. This distortion complicates the precise assessment of phenomena such as cloud coverage, geological features, or other surface events critical for scientific investigation. Thus, there is a need for a method that enables accurate and automated analysis without the distortion limitations inherent in traditional mapping approaches. NASA's innovative Grid-Oriented Normalization for Analysis of Spherical Areas (GONASA) directly addresses these challenges. The GONASA mathematical formula / algorithm provides a practical and accurate means of overcoming distortions through a novel, grid-based system of equal-area cells overlaid onto spherical surfaces. This enables users to reliably quantify and characterize objects on a sphere across entire surface, greatly enhancing the precision of scientific observations and improving the automation potential in processing and analyzing large volumes of data collected from satellite and spacecraft missions.

The Technology
NASA's GONASA technology is a mathematical formula / algorithm built around creating a grid composed of equal-area cells that span the entire visible hemisphere of a spherical object. Traditional longitude and latitude grids produce cells that diminish in size toward the poles due to convergence of longitudinal lines. GONASA circumvents this problem by carefully adjusting the latitude increments, resulting in a network of truly equal-area cells. This adjustment ensures that any feature observed on the spherical surface is accurately represented, regardless of its location. To implement GONASA, the spherical surface is first segmented into discrete latitude bands or rings, each chosen to encompass an identical surface area. Within each ring, longitude divisions maintain equal cell areas, creating a uniform Cartesian grid. The result is a consistent, distortion-corrected matrix suitable for automatic computation, enabling simplified, efficient, and accurate measurements of spatial characteristics such as feature area, centroid location, perimeter, compactness, orientation, and aspect ratio. GONASA grids are computationally efficient and readily adaptable to a range of data processing workflows, from spreadsheets to sophisticated data analysis frameworks like Pandas data frames in Python. Due to their consistent cell sizing and straightforward indexing, GONASA grids facilitate automation, enabling rapid, high-volume data processing and analysis, essential for modern remote sensing and planetary missions that require immediate, reliable data analysis in limited-bandwidth communications environments. At NASA, GONASA has already been successfully implemented to study images of Titan (e.g., mapping its clouds) taken by the Cassini space probe.
GONASA grids mapping clouds on Titan. Credit: NASA Latitude divisions chosen by GONASA to create a grid of equal-area cells. Credit: NASA
Benefits
  • Precision: Accurate and distortion-free measurement of features on spherical surfaces.
  • Computational efficiency: Simplified automated processing suitable for high-speed data analysis / on-board processing.
  • Flexibility: Resolution can be adjusted, allowing precise customization to specific scientific or operational needs.
  • Consistency across entire spheres: GONASA applies the same standardized approach everywhere on a spherical surface (from poles to the equator), eliminating the need for multiple processing methods.
  • Ease of integration: The mathematical formula / algorithm is compatible with common computational tools and software for streamlined integration.

Applications
  • Planetary exploration missions: Accurate mapping and analysis of features on planets and moons (e.g., crops, pollution, weather, ice, floods, fire, etc.).
  • Atmospheric research: Reliable tracking and characterization of clouds, storms, and aerosol distributions.
  • Environmental monitoring: Improved precision in measuring phenomena such as polar ice coverage, deforestation, or pollution dispersion.
  • Astronomical studies: Detailed mapping and analysis of celestial bodies.
  • Satellite and spacecraft imaging: Real-time, on-board computation and analysis.
Technology Details

Information Technology and Software
GSC-TOPS-390
GSC-19114-1
"Parameterization of Features on Spherical Surfaces," D.M. Trent, Z.R. Yahn, C.A. Nixon, and J.W. Santerre, NASA Technical Publication, October 1, 2023, https://ntrs.nasa.gov/citations/20220016787
Similar Results
https://ntrs.nasa.gov/api/citations/20230000798/downloads/UTA%20Feb%202023%20Troupaki%20STRIVES.pdf
3D Lidar for Autonomous Landing Site Selection
Aerial planetary exploration spacecraft require lightweight, compact, and low power sensing systems to enable successful landing operations. The Ocellus 3D lidar meets those criteria as well as being able to withstand harsh planetary environments. Further, the new tool is based on space-qualified components and lidar technology previously developed at NASA Goddard (i.e., the Kodiak 3D lidar) as shown in the figure below. The Ocellus 3D lidar quickly scans a near infrared laser across a planetary surface, receives that signal, and translates it into a 3D point cloud. Using a laser source, fast scanning MEMS (micro-electromechanical system)-based mirrors, and NASA-developed processing electronics, the 3D point clouds are created and converted into elevations and images onboard the craft. At ~2 km altitudes, Ocellus acts as an altimeter and at altitudes below 200 m the tool produces images and terrain maps. The produced high resolution (centimeter-scale) elevations are used by the spacecraft to assess safe landing sites. The Ocellus 3D lidar is applicable to planetary and lunar exploration by unmanned or crewed aerial vehicles and may be adapted for assisting in-space servicing, assembly, and manufacturing operations. Beyond exploratory space missions, the new compact 3D lidar may be used for aerial navigation in the defense or commercial space sectors. The Ocellus 3D lidar is available for patent licensing.
Technology Example
Computational Visual Servo
The innovation improves upon the performance of passive automatic enhancement of digital images. Specifically, the image enhancement process is improved in terms of resulting contrast, lightness, and sharpness over the prior art of automatic processing methods. The innovation brings the technique of active measurement and control to bear upon the basic problem of enhancing the digital image by defining absolute measures of visual contrast, lightness, and sharpness. This is accomplished by automatically applying the type and degree of enhancement needed based on automated image analysis. The foundation of the processing scheme is the flow of digital images through a feedback loop whose stages include visual measurement computation and servo-controlled enhancement effect. The cycle is repeated until the servo achieves acceptable scores for the visual measures or reaches a decision that it has enhanced as much as is possible or advantageous. The servo-control will bypass images that it determines need no enhancement. The system determines experimentally how much absolute degrees of sharpening can be applied before encountering detrimental sharpening artifacts. The latter decisions are stop decisions that are controlled by further contrast or light enhancement, producing unacceptable levels of saturation, signal clipping, and sharpness. The invention was developed to provide completely new capabilities for exceeding pilot visual performance by clarifying turbid, low-light level, and extremely hazy images automatically for pilot view on heads-up or heads-down display during critical flight maneuvers.
Seaweed Farms in South Korea acquired by The Operational Land Imager (OLI) on Landsat 8
Non-Scanning 3D Imager
NASA Goddard Space Flight Center's has developed a non-scanning, 3D imaging laser system that uses a simple lens system to simultaneously generate a one-dimensional or two-dimensional array of optical (light) spots to illuminate an object, surface or image to generate a topographic profile. The system includes a microlens array configured in combination with a spherical lens to generate a uniform array for a two dimensional detector, an optical receiver, and a pulsed laser as the transmitter light source. The pulsed laser travels to and from the light source and the object. A fraction of the light is imaged using the optical detector, and a threshold detector is used to determine the time of day when the pulse arrived at the detector (using picosecond to nanosecond precision). Distance information can be determined for each pixel in the array, which can then be displayed to form a three-dimensional image. Real-time three-dimensional images are produced with the system at television frame rates (30 frames per second) or higher. Alternate embodiments of this innovation include the use of a light emitting diode in place of a pulsed laser, and/or a macrolens array in place of a microlens.
https://science.nasa.gov/mission/viper/
3D Lidar for Improved Rover Traversal and Imagery
The SQRLi system is made up of three major components including the laser assembly, the mirror assembly, and the electronics and data processing equipment (electronics assembly) as shown in the figure below. The three main systems work together to send and receive the lidar signal then translate it into a 3D image for navigation and imaging purposes. The rover sensing instrument makes use of a unique fiber optic laser assembly with high, adjustable output that increases the dynamic range (i.e., contrast) of the lidar system. The commercially available mirror setup used in the SQRLi is small, reliable, and has a wide aperture that improves the field-of-view of the lidar while maintaining a small instrument footprint. Lastly, the data processing is done by an in-house designed processor capable of translating the light signal into a high-resolution (sub-millimeter) 3D map. These components of the SQRLi enable successful hazard detection and navigation in visibility-impaired environments. The SQRLi is applicable to planetary and lunar exploration by unmanned or crewed vehicles and may be adapted for in-space servicing, assembly, and manufacturing purposes. Beyond NASA missions, the new 3D lidar may be used for vehicular navigation in the automotive, defense, or commercial space sectors. The SQRLi is available for patent licensing.
Photo from NASA SESAR paper.
Dual-Polarized, Wideband, Lightweight P-band Antenna Element and Array
The P-band antenna array is built from rows and columns of antenna elements for the purpose of allowing beam steering up to the maximum desirable angle without incurring grating lobes in the radiation patterns. For flexible mission planning, a large array can be built from several of the small, panel-like elements. The elements are deployable from a folded or stacked stowed configuration during launch, arranged side by side during operation. Each antenna element is itself a fully functional small antenna array. The number of panels can be chosen as dictated by the mission objectives and budget. Three geometries were designed and tested. Geometry 1 features non-planar metal structures with minimal dielectric support, where the back cavity is closed. Geometry 2 features non-planar metal structures with minimal composite sheet dielectric support, but with an open cavity. Both geometries avoid large flat sheets, which are vulnerable to bending, thereby increasing the mechanical stiffness of the structure while using only thin sheet metal and maintaining an exceptionally low mass-to-size ratio. Geometry 3 features planar metal structures, with sandwich composite dielectric support and an open cavity. While it does not benefit from the mechanical stiffness utilized in non-planar designs, the planar sandwich structure increase robustness and reduces the cost of fabrication. All element geometries have wideband capabilities and are dual polarized. Although designed for space and planetary exploration, the P-band antenna is also valuable for various terrestrial use cases. The P-band antenna array is at technology readiness level (TRL) 5 (component and/or breadboard validation in relevant environment) and is available for patent licensing.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo X Logo Linkedin Logo Youtube Logo