Cryogenic Selective Surfaces
Materials and Coatings
Cryogenic Selective Surfaces (KSC-TOPS-59)
Maintaining Cryogenic Temperatures in Deep Space Using a Novel Thermal Coating
Overview
Thermal control coatings, i.e. coatings with different visible versus infrared emission, have been used by NASA on the Orbiter and Hubble Telescope to reflect sunlight, while allowing heat rejection via infrared emission. However, these coatings absorb at least 6% of the Sun's irradiant power, limiting the minimum temperature that can be reached to about 200 K. NASA needs better solar reflectors to keep cryogenic fuel and oxidizers cold enough to be maintained passively in deep space for future missions. This new thermal control coating material, developed for use as a spray on coating or rigid tiles, reflects essentially all solar radiation in the space environment. The novel material has the potential to be an enabler for long-term storage of cryogenic liquids and propellants in space. It can also support the long-term operation of low-temperature devices and systems used on space craft.
The Technology
These materials, which are composed of highly optically transmissive materials, are engineered to provide near-perfect reflection of the full solar spectrum in space. The materials are finely divided such that they scatter and reflect the incoming radiation from the UV down into the mid-IR and are also coated in some fashion with silver to extend the reflectance down into the far IR region of the solar spectrum. With this near-perfect reflectance of the complete solar spectrum, the scientists envision use of these materials for maintaining cryogenic temperatures for extended periods of time in space. The materials have also been developed into highly flexible, moisture resistant selective surface paint.The use and storage of cryogenics fluids is critical to many space operations, and while there are thermal control coatings in use today for spacecraft, none can provide this near-perfect reflection required for long-term maintenance of cryogenic temperatures.
Benefits
- 0.1% absorption of the suns energy
- Surfaces coated with these new coatings can reach much lower temperatures than achievable through the use of existing materials
- This technology would allow superconductors to operate and would allow LOX storage to occur at higher density or at lower pressure.
- Reflects solar radiation, while maximizing infrared emittance
- On earth cooling ranges of -50 C below ambient
- Highly flexible and moisture resistant
Applications
- Coating on space vehicles for long duration trips
- Coating on liquid oxygen storage in a deep space depot.
- Coating on liquid oxygen storage tank on the surface of the Moon.
- Protection of temperature-sensitive devices for deep space missions
- Development of solar thermal control materials to enable long-term storage of cryogenics propellants for future space missions
- Passive Cooling of High Temperature Superconductors in Space
Technology Details
Materials and Coatings
KSC-TOPS-59
KSC-13994
KSC-14090
KSC-14106
KSC-14173
KSC-14189
KSC-14477
KSC-13972
"A Cryogenic Deep Space Thermal Control Coating", R.C. Youngquist, M. A. Nurge, W. L. Johnson, T.L. Gibson, J. M. Surma, 2017.
Similar Results
Biologically-Inspired Radiation-Reflecting Ablator
Reentry heating comes from two primary sources: Convective heating from both the flow of hot gas past the surface of the vehicle and catalytic chemical recombination reactions at the surface; and Radiation heating from the energetic shock layer in front of the vehicle. The magnitude of stagnation heating is dependent on a variety of parameters, including reentry speed, vehicle effective radius, and atmospheric density. As reentry speed increases, both convective and radiation heating increase. At high speeds, radiation heating can quickly dominate and as the effective vehicle radius increases, convective heating decreases, but radiation heating increases. Radiation during reentry is a function of reentry speed which occurs very early in reentry for very specific wave-lengths and is dependent upon atmospheric composition. The Biologically-Inspired Radiation-Reflecting Ablator (BIRRA) approach converts amorphous silica of diatoms to a more refractory material, Silicon carbide (SiC), and incorporates it into a Thermal Protection System (TPS), especially near the surface to provide enhanced reflection during the initial stage of reentry into planetary atmospheres at high speeds. Different diatom species reflect different wavelengths. This conversion is performed in a fluidized bed reactor or other type of reactor to convert naturally ordered structures to higher temperature materials with a photonic structure that can better reflect radiation. TPS that shields vehicles from both radiative and convective heat would allow reduction of the mass fraction of the TPS, which will increase the mass fraction available for payload or reduce the overall mass and thus launch and propulsion requirements.
High Atomic Number Coatings for Fabrics
High atomic number materials, such as tantalum, do not bond well to oxygen- and hydroxyl-rich surfaces, such as glass fibers. These metals often form surface oxides when layered on glass fabric, resulting in flaking of the high atomic number material off the fabric during cutting, folding, and/or handling.
To improve coating durability, this invention applies a lower atomic number metal as a tie down layer first before applying the high atomic number metal layer. The tie down layer reduces oxide formation between the substrate and the high atomic number material, promoting adhesion. Titanium has shown strong adhesion with different metals and is effective at reducing oxide formation when diffusion bonded to itself or other materials. It has been shown to be effective at improving durability when thermally sprayed onto a glass fiber fabric as a tie down layer for a subsequent tantalum layer (also applied via RF plasma spray). The titanium layer is only approximately 1 mil thick but results in strong adhesion of the tantalum layer by inter-metallic or diffusion bonding. A thermal spray process may be used, as well.
This innovation enables the delivery of high atomic metal coating on glass fiber fabrics and other polymeric substrates that are lower cost, lighter weight, and durable to form a flexible cloth material with Z-graded radiation shielding. Coated samples have been produced and the technology is currently at a technology readiness level (TRL) of 4 (prototype).
Oil-Free Lubricants
In applying PS400 using the plasma spray-coating process, a 0.010 inch layer is deposited onto a metal surface. This composite coating often includes a metallic-based binder, a metal-bonded hardener, a high-temperature lubricant, and/or a low- temperature lubricant. PS400's improved metallic-based binder alloy greatly increases the structural strength and durability of the composite with respect to the operating temperature and the bearing load, and provides superior dimensional stability. PS400's metal-bonded oxide hardening agent provides additional hardness, wear resistance, and thermal stability, while also exhibiting a low coefficient of friction when used in sliding contacts. It is also significantly less expensive in terms of both acquisition and grinding processes.
Depending on the desired environment, high- and low-temperature lubricants may be added to the composite coating. The preferred high-temperature lubricant is a metal fluoride and the optional optional low-temperature lubricant is composed of metals, such as silver or copper, that are soft enough to provide lubrication at low temperature while maintaining oxidation resistance with a sufficiently high melting point. These qualities permit the materials to be used over a broad temperature range. Once the spray coating has been applied, the metal surface is ground and polished to produce a smooth, self-lubricating surface before use. Unlike some coatings that must be diamond-ground, PS400 is readily ground with a substantially less expensive abrasive, such as silicon carbide. This grinding process generally yields a coating thickness of 200 to 400 micrometers.
In instances when a coating is not convenient or possible, powder metallurgy techniques using PM400 can be used to make freestanding self-lubricating components such as bushings and wear plates.
Computer-implemented energy depletion radiation shielding
The difference between Layered Energy Depletion Radiation Shielding (LEDRS) and Stacked Energy Depletion Radiation Shielding (SEDRS) is how the piece of matter, or shield, is analyzed as radiation passes through the matter.
SEDRS involves using a defined and ordered stack of layers of shielding with different material properties such that the thickness and chemical properties of each material maximizes the absorption of energy from the radiation particles that are most damaging to the target. The SEDRS shielding method aims to provide the maximum level of energy absorption while still keeping shielding mass and volume low.
The process of LEDRS involves using layers of shielding material such that the thickness of each material is designed to absorb the maximum amount of energy from the radiation particles that are most damaging to the target after subsequent layers of shielding. The more energy is absorbed by the shielding material, the less energy will be deposited in the target minimizing the required mass to achieve a resulting lower dose for a given geometrical feature. The LEDRS shielding method aims to provide the maximum level of energy absorption. The process for designing LEDRS views potential radiation shields as a cascade of effects from each shielding layer to the next and is helpful for investigating the particular effects of each layer.
SEDRS and LEDRS can improve any technology that relies on the controlled manipulation of a radiation field by interaction with a material element.
Conductive High-Toughness Oxides
Oxide coatings have been used in thermal and environmental barrier layers for coatings for hot section turbine applications, among other uses. With the PS-PVD method, Glenn researchers observed the formation of a minority phase of a metastable oxide (zirconium oxide) that is usually found only in a vapor state. They found that the high temperatures and fast deposition process of the PS-PVD system incorporated nonequilibrium phases in the coating and retained them at room temperature as well as at high temperature in the absence of oxygen. The material is vaporized and condensed on the surface via a rapid quenching, essentially "trapping" this phase in the deposited coating. The coating microstructure and composition can also be manipulated by changing the processing parameters, allowing the thickness of the coating to be tailored to a given application. Since this metastable phase is conductive, this coating can be used as (for example) an extremely sensitive (thermal or temperature) sensor. It also has very good durability and erosion resistance, making it useful as a protective and conductive coating for electronics and microelectronics. This is an early-stage technology requiring additional development, and Glenn welcomes co-development opportunities.