Supersonic Laminar Flow Control

aerospace
Supersonic Laminar Flow Control (LAR-TOPS-311)
Controls laminar flow over all major components of the airframe
Overview
NASA's Langley Research Center has developed a technology that is projected to extend the laminar flow area over supersonic flight configurations by delaying the transition of boundary layer flow from laminar to turbulent state. This controls laminar flow over airframe components including wings, empennage, engine nacelles, and the nose region of an aircraft fuselage. It can be used in combination with many of the existing techniques for passive and active laminar flow control, but is particularly well-suited for a supersonic natural laminar flow design by virtue of avoiding the space, weight, system complexity, and maintenance penalties associated with suction based laminar flow control.

The Technology
This technique injects precisely defined stationary transient growth disturbances into the free air slipstream over a wing that develop into streamwise elongated "streaks." These streaks are created with an alternating pattern of low and high streamwise velocity in the boundary layer flow adjacent to the aerodynamic surface of interest. Judicious selection of streak wavelength, amplitude, and profile allows the first-mode instability waves responsible for transition via oblique mode breakdown to be damped while the remaining, uncontrolled waves are kept below an amplification threshold. A similar control concept is also applicable to second mode transition at hypersonic Mach numbers.
A possible embodiment of control device as micro vortex generators. Image Credit: NASA
Benefits
  • Potential to reduce skin friction drag up to 10-20%
  • Can be used in combination with many of the existing techniques for passive and active laminar flow control
  • Well-suited for a supersonic natural laminar flow design
  • Applicable to multiple components of airframe
  • Can be retrofit to current aircraft

Applications
  • Commercial Supersonic aircraft
  • UAVs
  • Military strike aircraft
Technology Details

aerospace
LAR-TOPS-311
LAR-18974-1
10,745,112
Similar Results
Low-drag liner with shared inlets.
Low, Drag, Variable-Depth Acoustic Liner
The drag penalty incurred by a conventional acoustic liner is dependent, to a large extent, on the perforate open area ratio (porosity) of the perforated facesheet. As the open area ratio is decreased, the facesheet behaves more like a solid surface and the drag is reduced. However, if the open area ratio is too small, the external acoustic field will be isolated from the resonators (in the liner), and the system will not provide noise reduction. The technology is a new type of variable-depth acoustic engine liner, which will reduce the drag and potentially manufacturing cost of this class of engine liner. Individual resonators within a conventional variable-depth liner are effective near resonance, but provide less acoustic benefit at other frequencies. In fact, at anti-resonance, a resonator behaves similar to a hard wall (i.e., the normal component of the particle velocity at the inlet is zero). Therefore, the proposed innovation couples neighboring resonators (tuned for different frequencies) together within the core of the liner. In other words, multiple resonators share a single inlet/port. Sharing inlets reduces the overall number of openings needed to maintain the acoustic performance of the liner by a factor of two or more. Reducing the open area ratio will in turn reduce the liner drag, and will reduce the number of holes that have to be machined into the facesheet, potentially reducing manufacturing cost. The functional operation of the proposed innovation will be identical to conventional engine liners. The innovation enables a reduction of the open area ratio of the perforated facesheet (by a factor of two or more) without degrading the acoustic performance. This will decrease the liner drag, and has the potential to reduce the manufacturing cost of the liner, since fewer holes need to be machined in the facesheet.
Simple COBRA geometry shape
Co-Optimization of Blunt Body Shapes for Moving Vehicles
Vehicles designed for purposes of exploration of the planets and other atmospheric bodies in the Solar System favor the use of mid-Lift/Drag blunt body geometries. Such shapes can be designed so as to yield favorable hypersonic aerothermodynamic properties for low heating and hypersonic aerodynamic properties for maneuverability and stability. The entry trajectory selected influences entry peak heating and integrated heating loads which in turn influences the design of the thermal protection system. A nominal is used to compare each shape considered. The vehicle will be subject to both launch and entry loading along with structural integrity constraints that may further influence shape design. Further, such vehicles must be sized so as to fit on existing or realizable launch vehicles, often within existing launch payload shroud constraints.
Open rotor
External Aircraft Noise Reduction Liners
This technology is an evolution of acoustic liners developed for engine noise abatement that are typically located inside nacelles. The acoustic liners described here can be outfitted on external surfaces and in tight spaces. Three initial areas of the aircraft have been considered as part of an aircraft configuration incorporating an open rotor propulsion system. The three areas where the liner configurations were applied were (1) under the rotor, (2) on the upper surface of the elevon, and (3) on the surface of a strut.
airplane wing
Flow Control Devices
Both oscillators are flow control devices based on novel geometric designs. They have no moving parts and produce spatially oscillating jets. Each was designed to address a particular limitation of current oscillators. Gaining control authority by decoupling frequency and amplitude: Existing oscillators are limited in that the frequency of oscillation is controlled by input pressure or mass flow rate--the frequency and amplitude (mass flow rate) are coupled, limiting control authority over the oscillators. The new oscillator design decouples the frequency from the amplitude by employing a novel design featuring a main oscillator that controls the amplitude and a small oscillator that controls the frequency of the oscillations (see Figure 1). The decoupled oscillator delivers high (or low) mass flow rates without changing the frequency and vice versa. Gaining control authority by synchronizing the entire oscillator jet array: Existing oscillators in an array oscillate randomly. While this is useful for mixing enhancement, synchronized flow may be more beneficial for active flow control applications. The simple design of the new Langley synchronized oscillator achieves synchronization without having electro/mechanical or any other moving parts. The new oscillator enables synchronization of an entire array by properly designing the feedback loops to have one unique feedback signal to each actuator. Once each actuator has the same feedback signal, each main jet attaches to one side of the Coanda surface at the same time, allowing synchronized oscillation, as shown in Figure 2.
Sourced from Shutterstock purchase 760625068
Improved Fixed-Wing Gust Load Alleviation Device
Gust loads may have detrimental impacts on flight including increased structural and aerodynamic loads, structural deformation, and decreased flight dynamic performance. This technology has been demonstrated to improve current gust load alleviation by use of a trailing-edge, free-floating surface control with a mass balance. Immediately upon impact, the inertial response of the mass balance shifts the center of gravity in front of the hinge line to develop an opposing aerodynamic force alleviating the load felt by the wing. This passive gust alleviation control covering 33% of the span of a cantilever wing was tested in NASA Langleys low speed wind tunnel and found to reduce wing response by 30%. While ongoing experimental work with new laser sensing technologies is predicted to similarly reduce gust load, simplicity of design of the present invention may be advantageous for certification processes. Additionally, this passive technology may provide further gust alleviation upon extending the use of the control to the entire trailing edge of the wing or upon incorporation with current active gust alleviation systems. Importantly, the technology can be easily incorporated into to the build of nearly all fixed wing aircrafts and pilot control can be maintained through a secondary trim tab. Though challenging to retrofit, passive gust alleviation could enable use of thinner, more efficient wings in new plane design.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo