Soft Magnetic Nanocomposite for High-Temperature Applications

materials and coatings
Soft Magnetic Nanocomposite for High-Temperature Applications (LEW-TOPS-150)
New material operates at up to 400°C with low losses
Overview
Innovators at NASA's Glenn Research Center developed a novel nanocomposite soft magnetic material for use in power electronics. The material maintains near room-temperature attributes of available soft magnetics, such as Hitachi Metals' FINEMET®, while surpassing these materials in temperature capability. In the present state-of-the-art, soft magnetic nanocomposites have an upper temperature limit rating of 150°C before core loss occurs. By adjusting the composition and fabrication, innovators at Glenn increased the operating temperature range to 400°C with minimal increase in core loss. While operating at high temperatures, the material exhibits high permeability and saturation flux density desirable in soft magnetics. Test cores of the novel material show improved temperature performance compared to available materials. NASA's development expands the application of soft magnetic material, enabling efficient power electronics that are smaller and lighter due to the reduced need for cooling.

The Technology
Commercial soft magnetic cores used in power electronics are limited by core loss and decreased ferromagnetism at high temperatures. Extending functional performance to high temperatures allows for increased power density in electric systems with fixed power output and elevated operating temperature. The innovators at Glenn developed a unique composition and process to improve the temperature capability of the material. Nanocomposite soft magnetic materials are typically comprised of a combination of raw materials including iron, silicon, niobium, boron, and copper. Instead of niobium, NASA's material utilizes small cobalt and tantalum additions. The raw materials are combined to form an amorphous precursor through melt spinning. NASA&#39s innovation with the fabrication lies in the thermal annealing step, which nucleates and crystallizes the precursor to form the composite structure of the material. By adjusting the temperature and magnetic field of the thermal annealing step, Glenn's process results in good coupling between the crystalline and amorphous matrix phases. Innovators at Glenn demonstrated the temperature robustness using small test cores of their material and are investigating additional quality attributes compared to other well-known soft magnetic materials (see two Figures below).
front from NETL doe.gov Hysteresis loops comparing the magnetic flux density of state-of-the-art materials (Fe-Si-Nb-B-Cu; Si-steel; Supermalloy) and NASA's novel material (Fe-Co-Si-Ta-B-Cu).
Benefits
  • Robust: capable of operating at temperatures up to 400° C, which is over 200°C higher than the maximum operating temperature of current materials
  • Stable: exhibits minimal core loss in comparison to state-of-the-art materials when operating at high temperatures (150°C and greater)
  • Inductive: maintains the high permeability required for optimal use of soft magnetic cores in high frequency applications
  • Efficient: enables the development of lighter and smaller power electronics through the improved temperature capability
  • Simple: reduces the need of implementing cooling capabilities in the design of power electronics

Applications
  • Aerospace: power electronics for electrified aircraft systems
  • Energy: power converters for solar energy power systems
  • Power electronics: medium frequency (1-1000kHz) energy conversion devices, such as inductors, transformers, and chokes
Technology Details

materials and coatings
LEW-TOPS-150
LEW-19859-1
Leary, A. M., Ohodnicki, P. R., & McHenry, M. E. (2012). Soft magnetic materials in high-frequency, high-power conversion applications. JOM, 64(7), 772-781.
Similar Results
Provided by inventor.
Advanced Materials for Electronics Insulation
Many researchers have attempted to use polymer-ceramic composites to improve the thermal and dielectric performance of polymer insulation for high voltage, high temperature electronics. However, using composite materials has been challenging due to manufacturing issues like incomplete mixing, inhomogeneous properties, and void formation. Here, NASA has developed a method of preparing and extruding polymer-ceramic composites that results in high-quality, flexible composite ribbons. To achieve this, pellets of a thermoplastic (e.g., polyphenylsulfone or PPSU) are coated with an additive then mixed with particles of a ceramic (e.g., boron nitride or BN) as shown in the image below. After mixing the coated polymer with the ceramic particles, the blended material was processed into ribbons or films by twin-screw extrusion. The resulting ribbons are highly flexible, well-mixed, and void free, enabled by the coated additive and by using a particle mixture of micronized BN and nanoparticles of hexagonal BN (hBN). The polymer-ceramic composite showed tunable dielectric and thermal properties depending on the exact processing method and composite makeup. Compared to the base polymer material, the composite ribbons showed comparable or improved dielectric properties and enhanced thermal conductivity, allowing the composite to be used as electrical insulation in high-power, high-temperature conditions. The related patent is now available to license. Please note that NASA does not manufacturer products itself for commercial sale.
Rover Large
New Methods in Preparing and Purifying Nanomaterials
Sometimes called white graphite, affordable and plentiful hBN possesses the same kind of layered molecular structure as graphite. In graphite, this structure has allowed next-generation nanomaterials like carbon nanotubes and graphene to be produced. With hBN, however, the process of converting the substance into boron nitride nanotubes (BNNT) has been too difficult to yield commercial quantities. Glenn innovators have created several new methods that could enable greater adoption of this unique nanomaterial. In the initial stage, the starter reactant is mixed with a selected set of chemicals (a metal chloride, for example) and an activation agent (such as sodium fluoride). This mixture causes hBN to become less resistant to intercalation. The intercalated product can then be exfoliated by heating the material in air, and giving the material a final rinse with a liquid-phase ferric chloride salt to dissolve any embedded impurities without damaging its internal structure. These efficiently exfoliated nanomaterials can be used to form advanced composite materials (e.g., layered with aluminum oxide to form hBN/alumina ceramic composites). Nanomaterials fabricated from hBN can also take advantage of the material's unique combination of being an electrical insulator with high thermal conductivity for applications ranging from microelectronics to energy harvesting. Glenn's innovations have enabled a significantly improved matrix composite material with the potential to make a significant impact on the commercial materials market.
NASA Plane
Double-Fed Induction Linear Alternator
This technology was developed to address the limitations of traditional, single-fed linear alternators, which require permanent magnets, adhesive bonding organics, and heavy iron laminations for flux control. They experience eddy-current losses and require electromagnetic interference protection. Furthermore, they have a limited operational temperature range (only up to 250°C), which typically declines to below 200°C as the adhesive bonding organics outgas and degrade over time. Consequently, they are limited to approximately 93% efficiency at ambient temperatures. Glenn's novel linear alternator addresses all of the limitations of its predecessors and engenders a number of desirable new qualities - notably the ability to reduce eddy-current losses by 25% and operate at 99% efficiency at temperatures up to 950°C. It features a concentric, additively manufactured monolithic copper plunger and stator. The stator is a stationary single copper Halbach array, whereas the plunger is a moving electromagnetic copper Halbach array. A direct current is delivered through the conductive piston flexure support, which also provides reactive power for resonance. It creates a fixed magnetic field similar to that of a permanent magnet, but the magnetic field is channeled inward by the Halbach mover, doubling its strength. By utilizing standard double-fed induction control methods, the reactive power can be transferred and adjusted between both coils. This maximizes system efficiency and minimizes weight. This innovative technology will enable a new class of vastly superior linear alternators with the ability to operate at extreme temperatures with increased performance and efficiency. This is an early-stage technology requiring additional development. Glenn welcomes co-development opportunities.
Sunset Jet Engine
Ruthenium-Doped Thermoelectric Materials
Solid state power conversion devices, such as thermoelectrics, depend upon temperature gradients for their operation. For example, aeronautic gas turbine engines maintain the necessary temperature gradients throughout their systems due to the enthalpic processes of combustion, which offers the possibility of generating electrical power for use in primary and secondary electrical systems in the aircraft. However, until now thermoelectric materials have not been able to withstand the combination of high temperatures and oxidative environments present in gas turbine engines. Glenn's innovation overcomes these limitations by using a doped oxide pyrochlore (crystal compound) semiconductor as the thermoelectric material. The material has a low thermal conductivity, which allows it to maintain a thermal gradient and sufficient electrical conductivity to produce an electromotive force. The pyrochlore allows the thermoelectric material to be present within a gas turbine engine, converting heat directly into electricity and functioning at high temperatures without oxidizing in air. Glenn's innovative thermoelectric material permits the benefits of solid-state power conversion devices to improve fuel efficiencies for a broader range of applications than has ever been possible. This innovation is in the early stages of development, and Glenn welcomes opportunities for co-development.
Molten Gold Pour
Silicon Carbide (SiC) Fiber-Reinforced SiC Matrix Composites
Aimed at structural applications up to 2700°F, NASA's patented technologies start with two types of high-strength SiC fibers that significantly enhance the thermo-structural performance of the commercially available boron-doped and sintered small-diameter “Sylramic” SiC fiber. These enhancement processes can be done on single fibers, multi-fiber tows, or component-shaped architectural preforms without any loss in fiber strength. The processes not only enhance every fiber in the preforms and relieve their weaving stresses, but also allow the preforms to be made into more shapes. Environmental resistance is also enhanced during processing by the production of a protective in-situ grown boron-nitride (iBN) coating on the fibers. Thus the two types of converted fibers are called “Sylramic-iBN” and “Super Sylramic-iBN”. For high CMC toughness, two separate chemical vapor infiltration (CVI) steps are used, one to apply a boron nitride coating on the fibers of the preform and the other to form the SiC-based matrix. The preforms are then heat treated not only to densify and shrink the CVI BN coating away from the SiC matrix (outside debonding), but also to increase its creep resistance, temperature capability, and thermal conductivity. One crucial advantage in this suite of technologies lies in its unprecedented customizability. The SiC/SiC CMC can be tailored to specific conditions by down-selecting the optimum fiber, fiber coating, fiber architecture, and matrix materials and processes. In any formulation, though, the NASA-processed SiC fibers display high tensile strength and the best creep-rupture resistance of any commercial SiC fiber, with strength retention to over 2700°F.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo