Soft Mate Lifting Device
mechanical and fluid systems
Soft Mate Lifting Device (MFS-TOPS-107)
Below-the-Hook Device Enabling Gentle Crane Placements to Decrease Property Damage Risk
Overview
Innovators at the NASA Marshall Space Flight Center have developed the Soft Mate system, a below-the-hook lifting device that provides initial and gentle contact between mating connections while using a crane. Cranes for lifting and lowering heavy objects are an important, sometimes essential, tool in modern industries such as construction, transportation, and manufacturing. NASA uses overhead and mobile cranes for assembly of load lines employed in full-scale testing of its Space Launch System (SLS), a super-heavy-lift launch vehicle for deep space human space exploration. Structural testing of the SLS requires precision placement of heavy objects with soft contact during mating connections, which proved to be problematic with the relatively coarse control available with motor-driven overhead cranes and existing rigging devices. In response, the Soft Mate lifting device was created to incorporate an adjustable pneumatic soft spring into the lift rigging of a crane that can maintain a neutral load while connections are assembled or disassembled.
The Technology
The Soft Mate lifting device is a below-the-hook tool that provides initial and gentle contact between mating connections while using a crane. The device utilizes a set of rolling lobe airbags to add a pneumatically adjustable soft spring into the lift rigging of a crane. The device is particularly useful for NASA's testing of the SLS, which requires the assembly and disassembly of hundreds of threaded load lines. While the load lines have relatively large diameter threaded connections to join components, the fine threads can be easily damaged by impact or misalignment. The added softness of the Soft Mate's airbag system helps maintain a neutral load on the threads to prevent galling as they are manually screwed or unscrewed.
The current state of the art in precision placement of objects by cranes is a below-the-hook hydraulic system that does not add any elasticity in the lift rigging and requires the user to constantly adjust the hydraulic pressure to maintain a neutral force on objects being joined. By virtue of the pneumatic core, the Soft Mate lifting device provides the needed elasticity while minimizing user interaction during lifting and placement. Although designed particularly to aid in NASA's SLS threaded load line assembly, the extra compliance provided by the Soft Mate system may also benefit other applications where additional control and precision are required for placing or mating heavy components. The Soft Mate design has undergone extensive stress analysis and is based on commercially available components that can be scaled and optimized for different weight requirements. The system provides the flexibility needed to assemble heavy components with threaded connections or other precision crane placement applications where greater compliance is needed.
Benefits
- Prevents damage to heavy objects during assembly: the Soft Mate system can be precisely and gently controlled when moving and placing objects
- Provides adjustable compliance in crane rigging: flexibility and compliance in crane rigging can be accomplished by adjusting the pneumatic system, as opposed to conventional methods such as using different sling materials like Kevlar and Nylon
- Increases user efficiency: the addition of a soft spring in the rigging sling allows for a larger window of displacement under neutral load and reduces the need for user interaction during the lift, making the system less interactive and more efficient for mating operations
- Enables a neutral load during operation: the user, in conjunction with the crane operator, can maintain a neutral load on mating connections without manipulating the device during the process
Applications
- Aerospace and aviation: precision assembly of large components for satellite, spacecraft, and aircraft manufacturing
- Construction: gentle lifting and lowering of heavy parts
- Consumer goods: moving and positioning property that is fragile, expensive, or otherwise problematic to move via conventional rigging
- Industrial machinery: building and maintaining heavy machinery
- Manufacturing: assembly of heavy components with threaded connections or precision load placement requirements, particularly where minimal clearances or tight tolerances are involved, such as the installation of hydraulic cylinders and load cells
- Marine: shipbuilding
- Power: placement of power generation equipment
- Transportation: railway construction
Tags:
|
Similar Results
Full-Size Reduced Gravity Simulator For Humans, Robots, and Test Objects
The Active Response Gravity Offload System (ARGOS) provides a simulated reduced gravity environment that responds to human-imparted forces. System capabilities range from full gravity to microgravity. The system utilizes input/feedback sensors, fast-response motor controllers, and custom-developed software algorithms to provide a constant force offload that simulates reduced gravity.
The ARGOS system attaches to a human subject in a gimbal and/or harness through a cable. The system then maintains a constant offload of a portion of the subjects weight through the cable to simulate reduced gravity. The system supports movements in all 3 dimensions consistent with the selected gravity level. Front/back and left/right movements are supported via a trolley on an overhead runway and bridge drive system, and up/down movements are supported via a precisely positioned cable. The system runs at a very high cycle rate, and constantly receives feedback to ensure the human subjects safety.
Lunar Surface Manipulation System
NASA Langley developed the LSMS because of the need for a versatile system capable of performing multiple functions on the lunar surface, such as unloading components from a lander, transporting components to an operational site and installing them, and supporting service and replacement during component life. Current devices used for in-space operations are designed to work on orbit (zero g) only and thus do not have sufficient strength to operate on planetary surfaces. Traditional cranes are specialized to the task of lifting and are not capable of manipulator-type positioning operations.
The innovations incorporated into the LSMS allow it to lower payloads to the ground over a significant portion of the workspace without use of a hoist, functioning like a robot manipulator, thus providing a rigid connection and very precise control of the payload. The LSMS uses a truss architecture with pure compression and tension members to achieve a lightweight design. The innovation of using multiple spreaders (like spokes in a wheel) allows the LSMS to maintain its high structural efficiency throughout its full range of motion. Rod portions of the tension members automatically lift off and re-engage the spreaders as the joint articulates, allowing a large range of motion while maintaining mechanical advantage. In addition, the LSMS uses a quick-change device at the tip end that enables automated acquisition of end effectors or special purpose tools to increase its versatility.
Multi-Link Spherical Joint
The Multi-Link Spherical Joint developed at NASA Johnson Space Center provides a substantial improvement over typical joints in which only two linearly actuated links move independently from one another. It was determined that the rotation point of a trussed link needed to be collocated at a shared point in space for maximum articulation. If not allowed separate rotation, the line of action through a universal joint and hinge acts effectively as another linkage. This leads to a much more complex and uncontrollable structure, especially when considering multiple dimensions.
Comprising the Multi-Link Spherical Joint, a spherical shell encases the cupped ends of each six possible attachments and allows each of those attachments to be independently controlled and rotated without inhibiting the motion of the others. To do this, each link is precisely limited to 15 degrees of rotation off the link centerline, thus allowing a total of 30 degrees of rotation for each link. The shell-and-cup structure can handle the loads of linear actuators that may be used to control and vary the geometry of a truss system utilizing the new joint technology. The calculated operating load that the truss system must handle can be used to scale the size of the joint, further allowing customization of any potential truss system. Additionally, the incorporated linear actuators can be controlled and powered by wiring routed through the joint without putting undo stress on the wires during operation. Accordingly, this innovative joint technology enables more efficient deployment and precise operation of articulating structures.
The Multi-Link Spherical Joint is at technology readiness level (TRL) 4 (component and/or breadboard validation in laboratory environment) and is available for patent licensing. Please note that NASA does not manufacture products itself for commercial sale.
Cord Tension Measurement Device (C-Gauge)
The C-Gauge is made of a 3D-printed aluminum body with strain gauges attached to the inner and outer walls of the connecting beam. The legs of the gauge attach firmly to the cord. When the cord is stretched, the tension in the cord goes through the legs and into the beam, causing it to bend. This bending creates a tension and compression stress in the bottom and top surface of the beam, respectively. The strain gauges capture the tension and compression, which are then used to determine the tension in the cord. The use of multiple strain gauges mitigates any torsion loading of the gauge and provides a direct measurement of the axial tension load of the cord.
The C-Gauge is a low-profile, non-invasive system that can be installed onto an existing cord in a system (e.g., the suspension, reefing, or riser lines in a parachute) without the need to remove or re-install the cord. It is small and lightweight and does not add stiffness or weight to the cord and thus does not affect the dynamics of the parachute or the structural response of the system. The C-Gauge can be scaled to larger and smaller sizes to measure larger and smaller load capabilities, dependent on the cord.
The C-Gauge is at a TRL 4 (component and/or breadboard validation in a laboratory environment) and it is now available for your company to license and develop into a commercial product. Please note that NASA does not manufacture products itself for commercial sale.
Fiber Optic Sensing Technologies
The FOSS technology revolutionizes fiber optic sensing by using its innovative algorithms to calculate a range of useful parameters—any and all of which can be monitored simultaneously and in real time. FOSS also couples these cutting-edge algorithms with a high-speed, low-cost processing platform and interrogator to create a single, robust, stand-alone instrumentation system. The system distributes thousands of sensors in a vast network—much like the human body's nervous system—that provides valuable information.
How It Works
Fiber Bragg grating (FBG) sensors are embedded in an optical fiber at intervals as small as 0.25 inches, which is then attached to or integrated into the structure. An innovative, low-cost, temperature-tuned distributed feedback (DFB) laser with no moving parts interrogates the FBG sensors as they respond to changes in optical wavelength resulting from stress or pressure on the structure, sending the data to a processing system. Unique algorithms correlate optical response to displacement data, calculating the shape and movement of the optical fiber (and, by extension, the structure) in real time, without affecting the structure's intrinsic properties. The system uses these data to calculate additional parameters, displaying parameters such as 2D and 3D shape/position, temperature, liquid level, stiffness, strength, pressure, stress, and operational loads.
Why It Is Better
FOSS monitors strain, stresses, structural instabilities, temperature distributions, and a plethora of other engineering measurements in real time with a single instrumentation system weighing less than 10 pounds. FOSS can also discern between liquid and gas states in a tank or other container, providing accurate measurements at 0.25-inch intervals. Adaptive spatial resolution features enable faster signal processing and precision measurement only when and where it is needed, saving time and resources. As a result, FOSS lends itself well to long-term bandwidth-limited monitoring of structures that experience few variations but could be vulnerable as anomalies occur (e.g., a bridge stressed by strong wind gusts or an earthquake).
As a single example of the value FOSS can provide, consider oil and gas drilling applications. The FOSS technology could be incorporated into specialized drill heads to sense drill direction as well as temperature and pressure. Because FOSS accurately determines the drill shape, users can position the drill head exactly as needed. Temperature and pressure indicate the health of the drill. This type of strain and temperature monitoring could also be applied to sophisticated industrial bore scope usage in drilling and exploration.
For more information about the full portfolio of FOSS technologies, see visit https://technology-afrc.ndc.nasa.gov/featurestory/fiber-optic-sensing