Portable Science Enclosure Features Unique Innovations

Health Medicine and Biotechnology
Portable Science Enclosure Features Unique Innovations (MSC-TOPS-126)
Provides a compact enclosure system enhanced by novel seal and through-port innovations
Overview
Innovators at NASA Johnson Space Center have designed a science enclosure system for science experiments conducted aboard the International Space Station (ISS). It allows users the ability to safely manipulate objects of study within the transparent enclosure by utilizing protective boundary layer innovations whose designs may be transferable to other containment systems. The science enclosure system can support experiments that would require Biosafety Level (BSL) 2 containment. The science enclosure employs a ventilation system that provides laminar flow throughout its interior with low electrical draw. The enclosure has a compact, low-profile, rectangular design that allows it to be easily stowed and transported. It features glove ports that interface with novel fasteners to facilitate the simple attachment of glove and seal assemblies or pass-through ports. The science enclosure system, glove seal, and through-port have a technology readiness level (TRL) 6 (System/sub-system model or prototype demonstration in an operational environment), and each are now available for patent licensing. Please note that NASA does not manufacture products itself for commercial sale.

The Technology
In the development of this technology for the ISS, engineers had to pay careful attention to electrical draw efficiency, ease-of-use, mass reduction, production cost, and safety, as conducting scientific research under spacecraft stressors is an important requirement. To create a controlled environment within the science enclosure, engineers designed a ventilation system incorporating an external fan/blower that pulls air across a HEPA filter and diffuses it in a manner that creates an even laminar flow within the enclosure before exiting through the exhaust filter. The glove seal forms an airtight and liquid impervious seal. This novel design also allows the user flexibility to choose their own task-specific glove material, facilitates easy tool-free assembly and quick glove changes, and may be transferable to other types of enclosures. Another key feature is that a through-port can be quickly fitted to an empty glove port. Due to the science enclosure system intended application aboard the ISS, its electrical draw does not exceed 24V, thereby making it feasible to power it from a battery for terrestrial field use or other applications where accessing power is a challenge. The combination of its performance, portability, BSL 2 capability, and inexpensive production costs could position the science enclosure system and accompanying innovations to be valuable in the fields of education, research, clean rooms, hospitals, and disaster relief efforts.
Eureka Pod Shown: Illustration shows prototype enclosure for ISS-rack installation
Benefits
  • Compact low-mass design facilitates portability and easy stowage
  • Biosafety Level 2 capable
  • Provides laminar airflow with reversible ventilation
  • Requires minimal electrical draw
  • Utilizes HEPA filters
  • Accommodates array of glove materials
  • Modular design features quick-change glove ports
  • Lab proven technology
  • Unique through-port traps microdroplets
  • Inexpensive to produce

Applications
  • Artifact storage and showcase
  • Clean rooms
  • Disaster relief areas
  • Education
  • Field use
  • Hospitals
  • Incubators
  • Lab research
  • Other containment systems
Technology Details

Health Medicine and Biotechnology
MSC-TOPS-126
MSC-26696-1 MSC-26697-1 MSC-26698-1
Similar Results
Hardware
Compact Science Experiment Module
The Compact Science Experiment Module (CSEM) provides a suitable experiment platform consisting of an enclosure that contains all the required components to perform science experiments that can house either living biological samples or other samples on both the ground and on the International Space Station (ISS). The invention provides required instrumentation for video capture and data storage, environmental monitoring, inclusive of sensing temperature in degree Celsius, relative humidity as a percentage, carbon dioxide in parts per million and oxygen in percentage format. Data can be stored within the module and retrieved after the experiment or can be transmitted to the ground as for example from the ISS, by connecting to the ISS telemetry system. The Compact Life Science Experiment Module has been fully developed at NASA Ames Research Center and tested on the ISS. In general, fruit fly studies can provide information about the effects of spaceflight at the biochemical, cellular and organismal levels. Using fruit fly spaceflight hardware, researchers are able to investigate the role of spaceflight on development, growth, reproduction, aging, neurobehavioral responses, immunity, heart function, etc. The fruit fly genome matches the human disease genome by almost 77%, and flies have, therefore, been a useful tool for scientists to understand the genetics, and molecular biology of more complex biological systems like humans. The Compact Science Experiment Module is extremely adaptable to other model specimens and samples as well, and has also flown plant experiments on the ISS. The software can be tailored to accommodate different experiment scenarios by adjusting video imaging times, LED light cycles, data storage and telemetry etc.
ISS as seen by STS-124; Photo Credit: NASA on the Commons, https://www.flickr.com/photos/nasacommons/35201127816/in/album-72157648186433655/
Liquid Sorbent Carbon Dioxide Removal System
NASA's Liquid Sorbent Carbon Dioxide Removal System was designed as an alternative to the current CO2 removal technology used on the International Space Station (ISS), which uses solid zeolite media that is prone to dusting, has a low absorption capacity, and requires high regeneration temperatures and frequent maintenance. Motivated by CO2 removal systems on submarines, NASA innovators began investigating the use of liquid sorbents. Liquid sorbents have a capacity four times greater than solid zeolites, require low regeneration temperature, and need fewer unreliable moving mechanical parts than solid based systems. While submarine CO2 scrubbers spray an adsorbing chemical directly into the air stream and allow the liquid to settle, NASA's new system uses a capillary driven 3D printed microchannel direct air/liquid contactor in a closed loop system. The Liquid Sorbent Carbon Dioxide Removal System is robust and reliable, while being low in weight, volume, and power requirements. The system is capable of reaching equilibrium when the liquid sorbent surface is being regenerated at a rate equal to the rate of absorption into the liquid.
Water flowing through hands
Microwave-Based Water Decontamination System
Bacterial contamination of water systems used in microgravity is a major issue for NASA because biofilms can clog or interfere with water system functions and bacterial ingestion can be harmful to astronaut health. To address this problem, NASA innovators developed a microwave based technology to purify contaminated water by eradicating and eliminating bacteria that grows in systems that generate potable water, in equipment utilizing cooling loops and heat exchangers, and removing bacterial contamination that is present on a variety of surfaces. This decontamination system is chemical free and requires minimal to no consumables. Initial testing identified a specific microwave frequency band and exposure times for killing bacteria (Burkholderia cepacia) and biofilm. Test results show that exposing static water to microwave energy for 90 seconds can effectively kill waterborne bacteria and biofilm within a water filtration system. Additional testing, using a circulating water test bed, demonstrated that microwave energy at the selected frequency can effectively eradicate waterborne bacteria within 30 seconds. This technology could be further developed into a portable, lightweight system for use in remote locations as well as commercial space applications. The microwave decontamination system could also be added to existing water systems to extend the life of the system.
front image
Habitat Water Wall for Water, Solids, and Atmosphere Recycle and Reuse
This approach allows water recycling, air treatment, thermal control, and solids residuals treatment and recycle to be removed from the usable habitat volume and placed in the walls of a radiation-shielding water wall. It also provides a mechanism to recover and reuse water treatment (solids) residuals to strengthen the habitat shell. Water-wall treatment elements are a much-enlarged version of the commercially available X-Pack hydration bag. Some water bags have pervaporation membranes facing inward that provide the capability to remove H0, C0, and trace organics from the atmosphere. Ideally the water wall is composed of a series of membrane bags packed as dry elements integrated into an inflatable habitat structure wall. After launch and deployment, it is filled with water and maintained as both a freshwater supply and radiation shield. As the initial water supply is consumed, the depleted treatment bags are filled with waste water and take on a dual role of active forward osmosis (FO) water treatment and water-wall radiation shielding.
Harsh Environment Protective Housings
Harsh Environment Protective Housings
These connectors are designed to be used in harsh environments and to withstand rough handling, such as being stepped on or rolled over by wheelbarrows or light vehicles. If the demated connectors are dropped or placed on the ground, the end caps will shield them from damage and contaminants. When mated, the seal between the housings and end caps keeps contaminants out. The end caps are latched to the housings so that the caps cannot be unintentionally opened; this latch can be opened only by depressing the levers. The spring used to open or close the cap is constructed of a shape memory alloy, allowing the cap to be opened and closed an almost infinite number of times. The cap actuation levers are designed so that only a 3/4-inch pull is needed to open the cap a full 190 degrees. The housings can accept most commercial-off-the-shelf electrical or fluid connectors (including those designed for cryogenics), thus eliminating the need for specialized connectors in hostile environments. The housings can also be grounded and scaled up or down to accommodate connectors of different sizes. The housings can be constructed of steel, aluminum, composites, or even plastic, depending on the environment in which they will be used and material cost constraints.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo