Optimum Solar Conversion Cell Configurations
power generation and storage
Optimum Solar Conversion Cell Configurations (TOP2-184)
Low Cost Optical Fiber Solar Cell Configurations
Overview
NASA has invented a new optical fiber that is suitable for solar lighting applications and electrical generation. A key feature is the integration of photovoltaic material for electricity generation. Fiber solar cells surpass both the efficiency and functionality of traditional flat-panel solar cells. A hybrid solar energy cell device manufactured from this new optical fiber consists of three or four layers of materials, including a combination of n-type nanowires and selected p-type polymers. The fiber has two key features which distinguish it from other fibers. First, the amount of visible light transmitted to the lighting application can be varied by tuning the fiber material. Second, photovoltaic material is integrated into the fiber and can be used to generate electricity - from the ultraviolet and infrared portions of the spectrum. If the fiber is tuned to reduce the amount of visible light transmitted to the lighting application, it is also used to generate electricity.
The Technology
A solar cell manufactured from this new optical fiber has photovoltaic (PV) material integrated into the fiber to enable electricity generation from unused light, including non-visible portions of the spectrum and visible light not transmitted to a lighting application. These new solar cells are based around cylindrical optical fibers, providing two distinct advantages over the flat panels that lead to increased efficiency. The core fiber, used to transmit light, can be adjusted to increase or decrease the amount of available light that is transmitted to the lighting application at any point in real time. This invention can be applied wherever optical concentrators are used to collect and redirect incident light. Wavelengths as large as 780 nanometers (nm) can be used to drive the conversion process. This technology has very low operating costs and environmental impacts (in particular, no greenhouse gas emissions). The fiber uses low-cost polymer materials. It is lightweight and flexible, and can be manufactured using low-cost solution processing techniques. Such multifunctional materials have great potential for the future of solar and photovoltaic devices. They will enable new devices that are small and lightweight that can be used without connection to existing electrical grids.
Benefits
- Provides lighting and electrical generation
- Light production can be varied
- Low manufacturing costs
- Low operating cost
- No greenhouse gas emissions
- Lightweight and flexible
Applications
- Solar lighting
- Solar powered devices
- Energy conversion and utilization
- Commercial buildings
- Space missions
Similar Results
High-Efficiency Solar Cell
This NASA Glenn innovation is a novel multi-junction photovoltaic cell constructed using selenium as a bonding material sandwiched between a thin film multi-junction wafer and a silicon substrate wafer, enabling higher efficiencies. A multi-junction photovoltaic cell differs from a single junction cell in that it has multiple sub-cells (p-n junctions) and can convert more of the sun's energy into electricity as the light passes through each layer. To further improve the efficiencies, this cell has three junctions, where the top wafer is made from high solar energy absorbing materials that form a two-junction cell made from the III-V semiconductor family, and the bottom substrate remains as a simple silicon wafer. The selenium interlayer is applied between the top and bottom wafers, then pressure annealed at 221°C (the melting temperature of selenium), then cooled. The selenium interlayer acts as a connective layer between the top cell that absorbs the short-wavelength light and the bottom silicon-based cell that absorbs the longer wavelengths. The three-junction solar cell manufactured using selenium as the transparent interlayer has a higher efficiency, converting more than twice the energy into electricity than traditional cells. To obtain even higher efficiencies of over 40%, both the top and bottom layers can be multi-junction solar cells with the selenium layer sandwiched in between. The resultant high performance multi-junction photovoltaic cell with the selenium interlayer provides more power per unit area while utilizing a low-cost silicon-based substrate. This unprecedented combination of increased efficiency and cost savings has considerable commercial potential.
This is an early-stage technology requiring additional development. Glenn welcomes co-development opportunities.
Advanced Efficiency Flexible Solar Film
By varying the number, type, orientation and functionality of various solar panel materials, a diverse family of devices can be constructed that can be tailored for many operational concepts. Various solar panel designs can be constructed that include active, cooling, and solar absorbance layers with tailored characteristics.
This flexibility is achieved by arranging multiple solar absorbance layers that are coupled to polymer composite solar absorbance layers. The polymer composite can contain metal salts, oxides and/or carbon nanotubes as needed for various applications. The polymer can be chosen for flexibility or stiffness characteristics as needed by the designer.
Configurations can include cooling layers with zinc oxides, indium oxides, and/or carbon nanotubes coupled between active layers. The carbon nanotubes can be aligned in a particular direction of the second cooling layer to achieve a heat flow bias. The cooling layer may be grooved to match other functional layers to increase the surface area for heat transfer.
Solar Cell Health Monitoring
One unique characteristic of this innovation is that it effects the measurement of I-V curves without the use of large resistor arrays or active current sources normally used to characterize cells. A single transistor is used as a variable resistive load across the cell. This multi-measurement instrument was constructed using operational amplifiers, analog switches, voltage regulators, metaloxidesemiconductor field-effect transistors (MOSFETs), resistors, and capacitors. The operational amplifiers, analog switches, and voltage regulators are silicon-on-insulator (SOI) technology known for its hardness to the effects of ionizing radiation. The SOI components used can tolerate temperatures up to 225°C, which gives plenty of thermal headroom allowing this circuit to perhaps reside in the solar cell panel itself where temperatures can reach over 100°C.
Free-space Fiber Optic Laser Rod
For this new laser concept, a relatively short but large core fiber doped by active lasing material is used in place of a conventional solid state crystal as the amplifier gain media in a free-space configuration. The technology avoids the usual problems of low thresholds for catastrophic optical damage and other nonlinear loss processes in fiber lasers by increasing the fiber core diameter of a standard 9 microns single mode fiber to the order of 1 mm, thereby permitting peak powers to be increased by factors of 10,000. The usual degradation of single mode propagation in large diameter fibers is avoided by keeping fiber lengths short, thereby staying within a free-space single mode propagation regime.
Conductive Polymer/Carbon Nanotube Structural Materials and Methods for Making Same
Carbon nanotubes (CNTs) show promise for multifunctional materials for a range of applications due to their outstanding combination of mechanical, electrical and thermal properties. However, these promising mechanical properties have not translated well to CNT nanocomposites fabricated by conventional methods due to the weak load transfer between tubes or tube bundles.
In this invention, the carbon nanotube forms such as sheets and yarns were modified by in-situ polymerization with polyaniline, a -conjugated conductive polymer. The resulting CNT nanocomposites were subsequently post-processed to improve mechanical properties by hot pressing and carbonization. A significant improvement of mechanical properties of the polyaniline/carbon nanotube nanocomposites was achieved through a combination of stretching, polymerization, hot pressing, and carbonization.