Cost Optimized Test of Spacecraft Avionics and Technologies(COTSAT) Modular Spacecraft Software Architecture
robotics automation and control
Cost Optimized Test of Spacecraft Avionics and Technologies(COTSAT) Modular Spacecraft Software Architecture (TOP2-267)
Rapidly produced low cost spacecraft
Overview
The Cost Optimized Test of Spacecraft Avionics and Technologies (COTSAT) was specifically developed to reduce the cost of designing and building spacecraft technologies while enabling rapid prototyping. The prototype spacecraft, also known as CheapSat, is the first of what could potentially be a series of rapidly produced low-cost spacecraft for science experiments and technology demonstration. The spacecraft platform is designed to accommodate low-cost access to space for variable remote-sensing payloads, while maintaining an architecture allowing future expansion for potential Space Life Sciences payloads.
The Technology
The goal of COTSAT as a technology demonstration unit is to demonstrate the ability for drastic cost reduction in spacecraft design and to develop methods and technologies for maximizing reuse of developed spacecraft hardware, software and related technology on future missions. This approach will enable for rapid response capabilities given advances in rapid prototyping.
COTSAT consists of the following sub-systems:
- An artificial environment container, which comprises much of the satellite structure, is used to contain the single atmosphere environment. The artificial atmosphere container is used to replicate an Earth-like atmosphere, allowing the use of Commercial-Off-The Shelf (COTS) hardware and electronics which were not necessarily originally designed to operate in the vacuum environment of space.
- A key design element in the bus structure of COTSAT is the modular platform upon which the bus is assembled. This structure allows for a logic-flow integration of components leading to ideal placement of electronics.
- The Electrical Power System (EPS) architecture utilizes a distributed power and self-monitor approach.
- The Command and Data Handling (C&DH) subsystem provides a number of critical capabilities, including spacecraft health and status monitoring, communication, payload science data management and subsystem management.
- The COTSAT communications architecture incorporates four independent communications paths.
- The software architecture consists of modular, independent software daemons for each subsystem or capability such as the star tracker, the Inertial Measurement Unit (IMU), the reaction wheels, the main executive, the communications system, the control system and the payload.
- The COTSAT has a three-axis Attitude Determination And Control System (ADACS), using four reaction wheels and three magnetic torque coils.
- To aid in technology development and testing, the COTSAT hardware and technology performance has been verified by a number of prototype test-beds. There have been three major test platforms during the development cycle.
Benefits
- Rapid prototype, can replicate quickly
- Low-cost
- Single atmosphere artificial environment replicates Earth-like atmosphere
- Robust to new payloads and new technologies
- Radiation tolerant, safe mode approach
- Reusable
- Reduced electrical noise and power loss from long leads
Applications
- Small satellites
- Space launch vehicles
- Remote sensing satellite
- Small spacecraft
Technology Details
robotics automation and control
TOP2-267
ARC-17599-1
Similar Results
SmallSat Standardized Architecture
SmallSat Standardized Architecture is architecture that is modularized, pressurizable, thermally controlled spacecraft-designed to host ruggedized commercial off-the-shelf (COTS) instrumentation in a terrestrial-like environment on orbit. The architecture takes advantage of a pressurizable volume for both spacecraft and payload systems. The pressurizable volume provides multiple benefits, primarily in thermal design. By maintaining one atmosphere of pressure inside the SmallSat, materials that might otherwise outgas and/or fail and/or cause significant contamination issues, are no longer a concern. This also means that certain vibration-absorbing materials/designs used in COTS hardware can be used on orbit. Additionally, printed circuit boards do not have to be redesigned for thermal requirements, plus conformal coating and contamination bake-outs are no longer required.
The SmallSat architecture is designed to take advantage of the United States Air Force (USAF) Rideshare Program and the Evolved Expendable Launch Vehicle Secondary Payload Adaptor (ESPA) ring. The ESPA ring comes in two sizes: standard and Grande. The architecture has two main configurations, one designed for the ESPA Grande, and the other for the standard ESPA ring. The ESPA Grande version is a hockey-puck-shaped spacecraft bus measuring approximately 40 inches in diameter and 20 inches in height. This version takes full advantage of the ESPA Grandes 300-kilogram capability per attachment point.
SmallSat Common Electronics Board (SCEB) Complement Board Design: Memory Card
The innovation is a miniaturized memory board that will have up to 96 GB of NAND Flash memory along with either a radiation tolerant FPGA or a set of three commercial FPGAs. The memory board is designed to interface with the standard subsystems of Goddards Modular SmallSat Architecture (GMSA). While previous memory cards are larger, this one is designed to fit within a 1U form factor.
Affordable Vehicle Avionics (AVA)
Significant contributors to the cost of launching nano- and micro-satellites to orbit are the costs of software, and Guidance, Navigation and Control (GNC) avionics systems that steer, navigate and control the launch vehicles, sequence stage separation, deploy payloads, and pass data to Telemetry. The high costs of these GNC avionics systems are due in part to the current practice of developing unique, custom, single-use hardware and software for each launch, and requiring high-precision measurements of position and attitude states. NASA Ames Research Center has developed and tested a low-cost avionics system prototype called Affordable Vehicle Avionics (AVA). AVA integrates a low-cost moderately-precise sensor suite with an advanced error-correcting software package to provide GNC for space launch vehicles in a package smaller than a multilayer sandwich (100 mm x 120 mm x 69 mm; 4in x 4.7in x 2.7in), and with a mass of less than 0.84kg (2lbs). The invention provides a common suite of avionics components and demonstration software that deliver affordable, capable GNC with flexible I/O which is applicable to a variety of nano/micro-sat launch vehicles at less than 10 percent of the cost to procure current state-of-the-art GNC avionics. Affordable Vehicle Avionics' (AVA's) approach to drastically reduce costs includes: (1) use of low-cost "tactical-grade" Commercial-off-the-Shelf MicroElectroMechanical Systems (MEMS) inertial measurement unit, wherein adequate navigation precision is achieved by fusing outputs from a Global Positioning System receiver, inertial sensors and a magnetic field vector sensor in an extended Kalman filter formulation that corrects inertial sensor biases; (2) a streamlined "cookbook" approach to define an effective process for launch vehicle developers to design, simulate, verify and support assembly, integration and testing of their SLVs, driven by high-fidelity six degrees of freedom SLV simulations and real-time hardware-in-loop tests to validate guidance, navigation and control for early test flights.
Development Status:
As of spring 2020, AVA has flown twice in its current configuration on a suborbital platform. Its navigation and control functions were successfully demonstrated for roll-rate control within a tight deadband onboard the first flight test, and it successfully issued attitude pointing commands to a failed reaction control subsystem and it issues issued a rocket-motor ignition command on a second flight test. To date, failure of SLV components other than AVA (e.g., electrical power) has precluded demonstration of navigation and control of an orbital or sub-orbital launch system, which remains to be demonstrated.
AVA development was accomplished using a single magnetometer-based magnetic field vector sensor to provide attitude observability during free-fall (inter-stage coast periods). Therefore, the current tested AVA configuration is susceptible to magnetic/electric fields produced by other components and payloads onboard the SLV, so care must be exercised to either mount AVA well away from sources of such fields and or to incorporate magnetic/electric field barriers on field emitters if separation from emitters is inadequate. Also, licensees may wish to provide new AVA inputs from a pair of external horizon sensors to provide more accurate attitude navigation during coast phases of the SLV mission.
Diminutive Assembly for Nanosatellite deploYables (DANY)
SmallSat designers seek to employ restraints and release mechanisms of minimal size and weight, often placing each on the outside of the SmallSat structure. Surprisingly, "fishing line" (released via burn through) is often used to secure and release deployables. Vibrations and forces generated during launch can stretch the fishing line, thus allowing these precious deployables to become damaged or otherwise not release properly later on. While these small sats are less expensive than their larger counterparts, satellite owners must minimize the chance that deployables are damaged or that deployment is unsuccessful.
Five years ago, engineers at NASA GSFC faced these SmallSat deployment challenges and knew a better way must exist to prevent equipment damage and ensure successful release. Investigating a host of designs to minimize size, weight, and cost while maximizing communication and mechanical reliability, NASA's engineers created DANY (the Diminutive Assembly for Nanosatellite deploYables). NASA's DANY technology uses spring-loaded metal pins, a reliable burn-through mechanism, efficient bracketing, and a circuit board - all within a 3.0" x 1.3" x 0.2" volume (smaller than a stack of 10 business cards) - to reliably stow and release deployables on command. Using DANY, stowed deployables are securely fastened using the spring-loaded locking pins. Upon receiving a deployment signal, a plastic restraining link is burned through which allows the spring-loaded pins to release the deployable and simultaneously trigger a switch to signal a successful deployment event.
Lightweight, Self-Deployable Helical Antenna
NASA's newly developed antenna is lightweight (at or below 2 grams), low volume (at or below 1.2 cm3), and low stowage thickness (approx. 0.7 mm), all while delivering high performance (at or above 10 dBi gain). The antenna includes a novel design-material combination in a helical coil conformation. The design allows the antenna to compress for stowage (e.g., satellite launch), then self-deploy at the desired time in orbit.
NASA's lightweight, self-deployable helical antenna can be integrated into a thin-film solar array (or other large deployable structures). Integrating antenna elements into deployable structures such as power generation arrays allows spacecraft designers to maximize the inherently limited resources (e.g., mass, volume, surface area) available in a small spacecraft. When used as a standalone (i.e., single antenna) setup, the the invention offers moderate advantages in terms of stowage thickness, volume, and mass. However, in applications that require antenna arrays, these advantages become multiplicative, resulting in the system offering the same or higher data rate performance while possessing a significantly reduced form factor.
Prototypes of NASA's self-deployable, helical antenna have been fabricated in S-band, X-band, and Ka-band, all of which exhibited high performance. The antenna may find application in SmallSat communications (in deep space and LEO), as well as cases where low mass and stowage volume are valued and high antenna gain is required.