Search

PATENT PORTFOLIO
NASA short ice-surveying mission in Antarctica
On-demand, Dynamic Reconfigurable Broadcast Technology for Space Laser Communication
NASA Goddard Space Flight Center has developed a configurable phase mirror system that can address likely obstacles in space optical communications. Through using miniature adjustable mirrors and programmed phase delays to diffract a single communication beam, numerous diffracted beams can be sent to other satellites in various directions for communication and tracking. The initial laser beams wave profile can be dynamically regulated through a fast Fourier transform (FFT) so that when it reaches its desired destination, it forms an intended illuminated spot at the target satellite. Since all the diffracted beams share the same phase mirror, the antenna gain needed to broadcast these beams does not require a multiplied aperture.
Hurricane Dorian Seen From Aboard the Space Station. Former Goddard electrical engineer and current NASA astronaut Christina Koch snapped this image of Hurricane Dorian from the International Space Station during a flyover on Monday, September 2, 2019. The station orbits more than 200 miles above the Earth.
Direction of Arrival Estimation Signal of Opportunity Receiver
The Direction of Arrival Estimation Signal of Opportunity Receiver is a transceiver technology for small satellite and CubeSat platforms that enables maximization of antenna gain in a specific direction to receive desired signals and suppress signals from other directions. The receive is a four-channel transceiver system to be operating in a LEO orbit for receiving direct as well as reflected signal (signals reflected from the ground) of a communication satellite. An adaptive array processing is implemented to steer the receiver beam towards the GEO satellites as well as steer the antenna beam towards the ground. When the beam is steered towards the ground the receiver provides attenuation for the direct signal incident from the GEO satellite, thus isolating the reflected signal from the strong direct signal. Usually a simple pair of cross dipoles are used for receiving signals transmitted by communication satellites. One pair is used to receive direct signals and another pair is used receive reflected signals. These dipoles are ideally supposed to receive only the reflected signals from the ground. However, because of close proximity and strong coupling to each other through their mutual coupling and because of their broad beam patterns, these dipole antennas receive signals reflected from other targets, as well as the direct transmitted signal. Since the strength of direct signals will be above the strength of reflected signals, reflected signals typically are completely masked by the strong direct signals. The Direction of Arrival Estimation Signal of Opportunity Receiver maximizes antenna gain in a desired direction to maximize desired signal and suppress unwanted signals.
NASA GOES 13 satellite image showing the US east coast and Hurricane Earl on September 1, 2010 13:10 UTC.
Space Weather Database Of Notifications, Knowledge, Information (DONKI)
The Space Weather DONKI builds a catalog of past, present, ongoing, and expected Space Weather events. The catalog contains both forecaster logs and notifications. DONKI version 2.0 of has a comprehensive web-service API access for users to obtain space weather events stored in the database. The database consists of a backend and a web application. The database uses a framework that allows modularization of code and promotes code reuse. DONKI is the first application to allow space weather scientists to store all space weather events in one centralized data center. The comprehensive database provides search capability to support scientists allowing them to look into linkages, relationships, and cause-and-effects between space weather activities.
satellite
Method and Associated Apparatus for Capturing, Servicing, and De-Orbiting Earth Satellites Using Robotics
This method begins with the optical seeking and ranging of a target satellite using LiDAR. Upon approach, the tumble rate of the target satellite is measured and matched by the approaching spacecraft. As rendezvous occurs the spacecraft deploys a robotic grappling arm or berthing pins to provide a secure attachment to the satellite. A series of robotic arms perform servicing autonomously, either executing a pre-programmed sequence of instructions or a sequence generated by Artificial Intelligence (AI) logic onboard the robot. Should it become necessary or desirable, a remote operator maintains the ability to abort an instruction or utilize a built-in override to teleoperate the robot.
SpaceCube 1.0b
SpaceCube
Next generation instruments are capable of producing data at rates of 108 to 1011 bits per second, and both their instrument designs and mission operations concepts are severely constrained by data rate/volume. SpaceCube is an enabling technology for these next generation missions. SpaceCube has demonstrated enabling capabilities in Earth Science, Planetary, Satellite Servicing, Astrophysics and Heliophysics prototype applications such as on-board product generation, intelligent data volume reduction, autonomous docking/landing, direct broadcast products, and data driven processing with the ability to autonomously detect and react to events. SpaceCube systems are currently being developed and proposed for platforms from small CubeSats to larger scale experiments on the ISS and standalone free-flyer missions, and are an ideal fit for cost constrained next generation applications due to the tremendous flexibility (both functional and interface compatibility) provided by the SpaceCube system.
The Navigator GPS Receiver
The Navigator GPS Receiver
To enable it to acquire GPS signals very quickly and also track weak signals, the radiation-hardened Navigator receiver utilizes a bank of hardware correlators, a ColdFire microprocessor, and a specialized fast acquisition module (see figure 1). The hardware is implemented in VHSIC Hardware Description Language (VHDL) to target radiation-hardened Field Programmable Gate Arrays (FPGA) rather than Application-Specific Integrated Circuits (ASIC), in order to maintain flexibility for growth and design modifications. The Navigator was designed to operate autonomously to enable the use of GPS for onboard navigation in high altitude space missions. With the exception of GPS signals, Navigator requires no external data (e.g., current time estimate, recent GPS almanac, or converged navigation filter estimate of the receiver dynamics). By double buffering data up front in 1ms blocks, data can be processed as it is acquired. A discrete Fourier transform (DFT) is used to calculate the 1ms correlations, significantly reducing computing time. Computational efficiency is optimized and tradeoffs among sampling rate, data format, and data-path bit rate are carefully weighed in order to increase performance of the algorithm. In addition, the Navigators hardware-independent receiver software includes both a hardware interface to perform low-level functions as well as basic navigation. Onboard orbit determination and accurate state estimation/propagation during periods with no GPS access are accomplished by integration with the GPS Enhanced Onboard Navigation System (GEONS). Exploiting the properties of Fourier transform in a massively parallel search for the GSP signal, the Navigator has been tested and proven capable of acquiring signals at 25dB-Hz and below.
.
Robotic gripper for satellite capture and servicing
The Gripper is located at the end of a robotic system consisting of a robotic arm equipped with a Tool Drive or End Effector comprising the input actuator to the Gripper as well as the structural, power and data link between the Gripper and the robotic arm. In a notional concept of operations, a Servicer would approach the Client in an autonomous rendezvous and capture (AR&C) maneuver. When the Servicers sensor suite confirms that the distance, orientation, and relative translational and angular rates with respect to the Client are within an acceptable range, the Servicer enables the grasping sequence, where the robotic arm, equipped with Gripper, extend forward to the Client. When the Gripper/ Servicer sensors indicate that the Client marman ring is sufficiently within the capture range of the Gripper, a trigger signal is sent to the robot control system that commands the End Effector to drive the mechanism of the Gripper and affect closure around the marman ring. The Gripper consists of a pair of jaws which are driven by an internal transmission. The transmission receives input torque from the End Effector and converts the torque to appropriate motion of the jaws.
Cooperative Service Valve for on-orbit cooperative satellite fueling
Cooperative Service Valve for In-orbit Cooperative Satellite Fueling
The CSV replaces a standard spacecraft Fill and Drain Valve to facilitate cooperative servicing. The CSV offers various advantages over standard service valves: a robotic interface, three individually actuated seals, a self-contained anti-back drive system, and built-in thermal isolation. When mounted to a spacecraft as designed, the CSV transfers all operational and induced robotic loads to the mounting structure. An anti-back drive mechanism prevents the CSV seal mechanism from inadvertent actuation. Alignment marks, thermal isolation, and a mechanical coupling capable of reacting operational and robotic loads optimize the CSV for tele-robotic operations. Unique keying of the mating interface prevents mixing of media where more than one configuration of the CSV is used. Color-coding and labels are also used to prevent operator error. The CSV has four configurations for different working fluids, all with essentially unchanged geometry and mechanics.
Miniaturized High-Speed Modulated X-Ray Source (MXS)
Miniaturized High-Speed Modulated X-Ray Source (MXS)
The MXS produces electrons by shining UV light from an LED onto a photocathode material such as magnesium. The electrons are then accelerated across several kV and into a chosen target material; deceleration produces X-rays characteristic of the target. The MXS uses an electron multiplier for high X-ray production efficiency. The MXS is more compact, rugged, and power-efficient than standard X-ray sources. It can be manufactured using commercially available components and 3D printed housing, resulting in a low cost to manufacture. Unlike traditional X-ray sources, the MXS does not require a filament or vacuum and cooling systems. Most importantly, enabling rapid and arbitrary modulation allows using X-rays in the time domain, a new dimension to X-ray applications.
View more patents
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo