The development, manufacturing and utilization of instruments used in science and industry to monitor an application so that information about the application's progress, performance and status is captured and reported.
Model-Based Prognostics For Batteries
Model-Based Prognostics For Batteries
This invention relates to the prediction of the remaining useful life of an object in use. It develops a mathematical model to describe battery behavior during individual discharge cycles as well as over its cycle life. The models used to estimate the remaining useful life of batteries are linked to the internal electro-chemical processes of the battery. The effects of temperature and load have been incorporated into the models. Model validation studies were conducted using data from a series of battery cycling experiments at various thermal and electrical loading conditions. Subsequently, the model has been used in a particle filtering framework to make probabilistic predictions of remaining useful life for individual discharge cycles as well as for cycle life.
Oil and Gas processing plant
Real Time Radiation Monitoring Using Nanotechnology
Carbon nanotube chemical sensors are suitable for sensing different analytes. Such sensors can be configured in the form of an array to comprehensively and cost-effectively monitor multiple analytes. A 32-sensor array on a silicon chip was tested under the proton exposure at two energy levels, with three different fluences. The result of the proton irradiation experiment indicates that this SWCNT device is sensitive to the proton exposure at different levels and it recovers upon turning off the incident radiation. Carbon nanotube-based sensors are particularly suitable and promising for chemical and radiation detection, because the technology can be used to fabricate gas or liquid chemical sensors that have extremely low power requirements and are versatile and ultra-miniature in size, with added cost benefits. Low-power carbon nanotube sensors facilitate distributed or wireless gas sensing, leading to efficient multi-point measurements, and to greater convenience and flexibility in performing measurements in space as well as on Earth.
SpaceCube is a next-generation computer system developed at the Goddard Space Flight Center in Greenbelt, Md.
SpaceCube v2.0 Processor with DDR2 Memory Upgrade
This new version of the card assembly will feature a total of eight 4x DDR2 SDRAM memories per Xilinx FPGA. A dedicated regulator was included to compensate for the lower operating voltage of DDR2 in comparison to the older DDR memory. The DDR2 memories are grouped in pairs with shared address/command/control lines. By sharing those lines, the number of Xilinx I/Os for the DDR2 interfaces could be reduced. These improvements extend the life and design of the processor and provide even greater memory throughput to support the next generation of instruments.
Multi-Parameter Aerosol Scattering Sensor
Originally developed to demonstrate a highly accurate, low-false-alarm, early fire detection system in space, this advanced technology level system utilizes a durable, low-cost, compact laser source and detector array, similar to CD/DVD player technology, to analyze the interaction of light with particles. The smart system is ideal for detecting a diverse range of particles found in pollution, emissions, fire and other atmospheric toxins while introducing a flexibility that enables its use in multiple environments, especially when coupled with UAVs or other remote platforms. The MPASS contains a number of features that allow users to make the most of its pioneering capabilities. The self-contained system is lightweight and has been miniaturized and packaged to easily fit into the palm of your hand. A USB port enables the system to be powered, configured, and accessed through its onboard central processing unit. The advanced graphical user interface, custom software, and optimized algorithm allows the user to select known properties when applicable, and to program the system for maximum performance. The dashboard also provides visual feedback through graphical displays, making it easy to analyze the data and make real-time decisions. The system is designed with Bluetooth expansion capability, adding flexibility and communication through potential custom cellular phone applications. Once programmed, the battery-powered wireless sensor system opens the door to monitoring remote areas and extreme environments never thought possible.
Apparatus and Method for Testing Thermal Performance of Pipelines
International Observe the Moon Night
Credit: NASA/GSFC/Debbie Mccallum
Method for Absolute Calibration and Tracking of Large Format Detectors Using Laser Radar
The purpose of this technology is to obtain charge coupled device (CCD) pixel location knowledge in 6 degrees of freedom with detector alignment precision of tens of microns of absolute uncertainty in a mechanical coordinate system. This non-contact approach involves the use of laser radar to obtain the orientation of the CCD pixels on a large format detector. This information can be used to align a detector in an optical system or interpolate image data from the CCD and correlate image features with physical locations in real space. The X, Y pixel value results for image analysis can be transformed into a three dimensional coordinate system. Using the laser radar, the CCD pixels are physically mapped and then related to external metrology targets on the detector housing. To accomplish this mapping, the laser radar is pointed at and focused on three or more locations on the detectors active area where a full frame readout of the detector is captured. This approach addresses a couple of technical challenges. The first challenge was to place a detector accurately and effectively as to have the OTE pupil image in plane with the detector pixels. Lastly, once the detector alignment is accomplished, how can the location of key features be established in the working coordinate system. This solution satisfies both of those challenges.
Biblade sampler
Cryostat-500 (disassembled)
The Cryostat-500 provides laboratory measurement of the steady-state thermal transmission properties of thermal insulation systems under conditions below ambient temperature. Liquid nitrogen is used as a direct measure of the energy going through the test specimen. Thermal insulation systems may be composed of one or more materials that may be homogeneous or non-homogeneous at boundary conditions from 77 K to 373 K and in environments from high vacuum (10E-7 torr) to ambient pressure (10E+3 torr). The Cryostat-500 provides a much wider range of thermal performance and covers the full range of environmental conditions for applications below ambient temperature. The instrument has been proven through extensive testing of foams, composite panels, multilayer insulation (MLI) systems, aerogel blankets, fiberglass, and many other types of materials. Both the quality and quantity of the thermal performance data for insulation materials and systems have increased even as the process and method has become more time efficient and cost effective. Further guidelines on the test method and equipment for the Cryostat-500 are given in ASTM C1774, Annex A3.
Onboard the R/V Atlantis a tangle of power and data cables awaits a busy team of scientists who will organize them
A two-way microwave power divider using microstrip transmission lines
The power divider use Klopfenstein tapered transmission lines on each output branch of the junction impedance that is matched the input port. Thus, the output lines are well matched to the input, and a reflected power of 1% can be easily achieved. Resistors are distributed along the transmission lines to provide isolation between the two output ports which prevents power of one output port from coupling to the other output port. A large amount of the power is dissipated in the resistors rather than exiting through any other ports in the system. Due to the symmetry of the design, very little power is dissipated during normal operation. The resulting power divider is operable at high bandwidths as the tapered impedance match which have no upper frequency limitation. Additionally, the tapered lines eliminate many discontinuities in the layout which in turn reduce microwave junction effects. The power divider is capable of being manufactured using known methods and may be utilized in a compact microwave spectrometer.
View more patents
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo