metal oxide composites

sensors
Sensor
Solid State Carbon Dioxide (CO<sub>2</sub>) Sensor
The technology is a solid state, Carbon Dioxide (CO<sub>2</sub>) sensor configured for sensitive detection of CO<sub>2</sub> having a concentration within the range of about 100 Parts per Million (ppm) and 10,000 ppm in both dry conditions and high humidity conditions (e.g., > 80% relative humidity). The solid state CO<sub>2</sub> sensor achieves detection of high concentrations of CO<sub>2</sub> without saturation and in both dynamic flow mode and static diffusion mode conditions. The composite sensing material comprises Oxidized Multi-Walled Carbon Nanotubes (O-MWCNT) and a metal oxide, for example O-MWCNT and iron oxide (Fe2O3) nanoparticles. The composite sensing material has an inherent resistance and corresponding conductivity that is chemically modulated as the level of CO<sub>2</sub> increases. The CO<sub>2</sub> gas molecules absorbed into the carbon nanotube composites cause charge-transfer and changes in the conductive pathway such that the conductivity of the composite sensing material is changed. This change in conductivity provides a sensor response for the CO<sub>2</sub> detection. The solid state CO<sub>2</sub> sensor is well suited for automated manufacturing using robotics and software controlled operations. The solid state CO<sub>2</sub> sensor does not utilize consumable components or materials and does not require calibration as often as conventional CO<sub>2</sub> sensors. Since the technology can be easily integrated into existing programmable electronic systems or hardware systems, the calibration of the CO<sub>2</sub> sensor can be automated.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo