Search

communications
Lightweight, Self-Deployable Helical Antenna
NASA's newly developed antenna is lightweight (at or below 2 grams), low volume (at or below 1.2 cm3), and low stowage thickness (approx. 0.7 mm), all while delivering high performance (at or above 10 dBi gain). The antenna includes a novel design-material combination in a helical coil conformation. The design allows the antenna to compress for stowage (e.g., satellite launch), then self-deploy at the desired time in orbit. NASA's lightweight, self-deployable helical antenna can be integrated into a thin-film solar array (or other large deployable structures). Integrating antenna elements into deployable structures such as power generation arrays allows spacecraft designers to maximize the inherently limited resources (e.g., mass, volume, surface area) available in a small spacecraft. When used as a standalone (i.e., single antenna) setup, the the invention offers moderate advantages in terms of stowage thickness, volume, and mass. However, in applications that require antenna arrays, these advantages become multiplicative, resulting in the system offering the same or higher data rate performance while possessing a significantly reduced form factor. Prototypes of NASA's self-deployable, helical antenna have been fabricated in S-band, X-band, and Ka-band, all of which exhibited high performance. The antenna may find application in SmallSat communications (in deep space and LEO), as well as cases where low mass and stowage volume are valued and high antenna gain is required.
Information Technology and Software
Image Credit: NASA
SpaceCube Mini Solid State Data Recorder (SSDR)
NASA's SpaceCube Mini SSDR is a 3.5”x3.5” card designed for use in CubeSats and SmallSats. The SSDR uses a radiation-tolerant field programmable gate array (FPGA) that interfaces with two independently controlled and powered banks of NAND Flash storage, providing up to 12 Terabits of storage capacity. The card includes multiple SpaceWire nodes and multi-gigabit transceivers for commanding and data transfer, various error prevention and correction mechanisms including Reed-Solomon encoding/decoding and data randomization schemes, and depacketizers/packetizers for handling data in CCSDS format. This NASA technology is innovative in its combination of high reliability for harsh radiation environments (e.g., geostationary orbit, lunar orbit and surface, etc.) with high-speed data transfer capabilities (400+ MB/s write, 600+ MB/s read) in a compact form factor. The design allows for selective population of NAND Flash modules and independent control of memory banks, enabling power optimization through features like single-bank operation. The card integrates with a modular architecture system in which multiple CubeSat-sized cards (e.g., processors, GPS, etc.) can be mixed and matched to meet specific mission requirements. The SSDR card includes radiation-hardened voltage regulators to ensure safe operation in space environments. The SSDR is ideal for small form factor satellites with some combination of the following requirements: (a) ability to store large amounts of data generated by high-performance detectors and sensors for extended durations (e.g., in environments without nearby relay capabilities), (b) ability to read and write data with high throughput, and (c) ability to operate in harsh radiation environments. It is fully compatible with NASA’s CubeSat Card Specification (CS2) and NASA’s SpaceCube v3.0 mini processing card, which is also available for licensing.
Optics
Credit: NASA
LiDAR with Reduced-Length Linear Detector Array
The LiDAR with Reduced-Length Linear Detector Array improves upon a prior fast-wavelength-steering, time-division-multiplexing 3D imaging system with two key advancements: laser linewidth broadening to reduce speckle noise and improve the signal-to-noise ratio, and the integration of a slow-scanning mirror with wavelength-steering technology to enable 2D swath mapping capabilities. Range and velocity are measured using the time-of-flight of short laser pulses. This highly efficient LiDAR incorporates emerging technologies, including a photonic integrated circuit seed laser, a high peak-power fiber amplifier, and a linear-mode photon-sensitive detector array. With no moving parts, the transmitter rapidly steers a single high-power laser beam across up to 2,000 resolvable footprints. Fast beam steering is achieved through an innovative high-speed wavelength-tuning technology and a single grating design that enables wavelength-to-angle dispersion while rejecting solar background for all transmitted wavelengths. To optimize receiver power and reduce data volume, sequential returns from up to 10 different tracks are time-division-multiplexed and digitized by a high-speed digitizer for surface ranging. Each track’s atmospheric return can be digitized in parallel at a lower resolution using an ultra-low-power digitizer. Originally developed by NASA for SmallSat missions, this system’s precise and accurate observation capabilities—combined with reduced costs, size, weight, and power constraints—make it applicable to a wide range of LiDAR applications. The LiDAR with Reduced-Length Linear Detector Array is currently at Technology Readiness Level (TRL) 4 (validated in a laboratory environment) and is available for patent licensing.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo X Logo Linkedin Logo Youtube Logo