Novel Antenna Concept for CubeSat Platforms

aerospace
Novel Antenna Concept for CubeSat Platforms (GSC-TOPS-225)
An antenna is embedded into the structure of a Cubesat providing robust communications with reduced weight and mass.
Overview
Current Cubesat antenna technology requires packaging during the launch and deployment mechanisms during orbit. This packaging and deployment hardware adds extra volume, weight and complexity to a payload. Additionally, there is a risk of deployment mechanism failure. By integrating the antenna into the structure of a Cubesat, the need for extruding antennas, packaging considerations and deployment mechanism are eliminated. The resulting antenna has reduced weight and volume and increased dependability.

The Technology
The side walls and railing rods of a CubeSat are replaced by RF radiators that double as supporting structures. The RF radiators are hollow railing rods with inner dimensions that function as a waveguide to carry RF energy at a desired frequency. Radiating slots are cut on two of the four sides of hollow tubes tube that are open to outside environment. Different operating frequency antennas may be placed at each of the Cubesats four corners. Thus the railing rods provide RF antenna functionality in addition to structurally supporting the CubeSat structure. While this technology was designed for Cubesats, it may be utilized in any technology that utilizes a structural frame. The advantages of this system are increased reliability due to the elimination of deployment mechanisms and decreased payloads. Higher frequency antennas with increased gain and directivity may be embedded into the rails. These higher frequencies are especially useful for remote sensing.
Space cube installed on Space Station.
Benefits
  • Higher reliability
  • Lower weight and mass

Applications
  • Drones
  • CubeSats
Technology Details

aerospace
GSC-TOPS-225
GSC-17864-1
10361472
Similar Results
NASA's most exciting science missions: mind-bending results from the Hubble Space Telescope
A Broadband, Compact Low-Power microwave Radiometer Down Converter for Small Satellite Applications
The system includes a fundamental local oscillator (LO) source composed of a broad-band tunable frequency synthesizer as well as a crystal oscillator. The synthesizer employs a harmonic doubler to expand frequency coverage. The CubeRRT system uses a series of RF switches and band-pass filters, to select the desired harmonic while suppressing unwanted harmonics. The CubeRRT system uniquely combines several technologies to minimize the number of frequency banks and thus reduce mass, volume and power requirements. The CubeRRT system uses four frequency banks in order to provide continuous microwave receiver coverage from 6GHz to 40GHz.
Lightweight, Self-Deployable Helical Antenna
NASA's newly developed antenna is lightweight (at or below 2 grams), low volume (at or below 1.2 cm3), and low stowage thickness (approx. 0.7 mm), all while delivering high performance (at or above 10 dBi gain). The antenna includes a novel design-material combination in a helical coil conformation. The design allows the antenna to compress for stowage (e.g., satellite launch), then self-deploy at the desired time in orbit. NASA's lightweight, self-deployable helical antenna can be integrated into a thin-film solar array (or other large deployable structures). Integrating antenna elements into deployable structures such as power generation arrays allows spacecraft designers to maximize the inherently limited resources (e.g., mass, volume, surface area) available in a small spacecraft. When used as a standalone (i.e., single antenna) setup, the the invention offers moderate advantages in terms of stowage thickness, volume, and mass. However, in applications that require antenna arrays, these advantages become multiplicative, resulting in the system offering the same or higher data rate performance while possessing a significantly reduced form factor. Prototypes of NASA's self-deployable, helical antenna have been fabricated in S-band, X-band, and Ka-band, all of which exhibited high performance. The antenna may find application in SmallSat communications (in deep space and LEO), as well as cases where low mass and stowage volume are valued and high antenna gain is required.
NLAS Cubesat
Nanosatellite Launch Adapter System
NLAS consists of three configurable subsystems to meet the needs of a multi-spacecraft launch. The Adapter is the primary structure that provides volume for secondary payloads between the rocket and the primary spacecraft. The Adapter takes advantage of the frequently unused volume within the rocket fairing. It fits up to 4 NLAS Dispenser units, or 8 eight Poly-PicoSatellite Orbital Deployers (P-PODs), or any combination thereof. The NLAS Dispenser is reconfigurable to support either two 3U bays or a single 6U bay and is compatible with 1U, 1.5U, 2U, 3U, and 6U satellites. The Dispenser system is the first 6U deployment system backwards compatible to 3U spacecraft. Finally, the NLAS deployment Sequencer is an internally powered subsystem which accepts an initiation signal from the launch vehicle and manages the actuations for each deployment device per a user programmable time sequence. It is programmed using ground support equipment (GSE) and a simple graphical user interface (GUI) on a computer.
Figure 1.  Antenna Design.
Multi-and Wide-Band Single-Feed Patch Antenna
NASA's patch antenna technology exhibits higher operational bandwidth (on the order of 20%) than typical patch antennas (less than 10%) and can operate across integer-multiple frequency bands (e.g. S/X, C/X, S/C). Testing of the antenna design has demonstrated &#62 6dB of gain on both S and X bands (boresight), with an axial ratio of &#60 6dB and voltage standing wave ratio (VSWR) &#60 3:1 throughout the entire near-Earth network (NEN) operating bands (22.4GHz and 88.4GHz) with hemispherical coverage. The patch size is on the order of 10 x 10 cm and with associated electronics, is about 1 cm in height.
Typical sheet of Z-Shield material prior to vault assembly
Novel Radiation Shielding Material for Dramatically Extending the Orbit Life of Cubesats
A high density metal, such as tantalum or tungsten is coated onto thin aluminum sheet in precise ratios and thicknesses. The combined sheet is then easily formed into standardized enclosures compatible with CubeSat design and performance specifications.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo