Phononic Isolated Kinetic Inductance Detector Fabrication Process
sensors
Phononic Isolated Kinetic Inductance Detector Fabrication Process (GSC-TOPS-252)
A fabrication process that can integrate a phononic crystal into a kinetic inductance detector architecture to reduce the loss of athermal phonons
Overview
Kinetic Inductance Detectors (KIDs) are highly sensitive superconducting cryogenic detectors which can be scaled to very large format arrays. However, KID detectors are not as sensitive as transition edge sensor bolometers. Currently, no detector technology exists that meets the requirements for next generation space telescopes which have specific noise-equivalent power (NEP) and stability requirements. NEP is a measure of the sensitivity of a detector system. Many space telescopes also require large format arrays. KIDs are highly scalable to large format arrays, but have not demonstrated adequate NEP, since they are often limited by the generation recombination rate of quasi-particles in the superconducting film. The Phononic Isolated KID Fabrication Process reduces the NEP without sacrificing scalability.
The Technology
The Phononic Isolated KID Fabrication Process utilizes a silicon on insulator, or a silicon wafer coated with a thin film bilayer of silicon oxide and silicon nitride (or amorphous silicon), to be used as the starting wafer. The silicon or silicon nitride thin films act as the structural material. The films thicknesses are chosen based on the desirable phononic crystal properties. The phononic crystal is patterned with electron beam lithography to get minimum features. The structures are etched in a fluorine plasma chemistry stopping on the oxide layer. The niobium or other superconductor layer is deposited, patterned, and etched. This can be done in a liftoff process so as not to damage the SiN or Si underlayer. A hafnium or other superconductor is deposited, patterned, and etched to function as the kinetic inductance material. A silicon handle wafer is patterned and etched using deep reactive ion etching which stops on the silicon oxide. The silicon oxide is etched in hydroflouric acid and a wax bonding material used as a temporary bonding material is dissolved. The final structure is removed from the temporary handle wafer. This process is beneficial in that it is simple aside from the incorporation of the nanostructured membranes.
The Phononic Isolated KID Fabrication Process is an implementation of incorporation of a phononic crystal into a KID architecture. The process can also incorporate a second dieletric material such as nanocrystalline diamond that can be used as a stiffening material for the phononic crystal.
Benefits
- Improves detector performance
- Enables salability for cryogenic detectors
Applications
- High performance cryogenic detector technology
- Single photon calorimetry
Technology Details
sensors
GSC-TOPS-252
GSC-18244-1
GSC-18400-1
Similar Results
Low-Power Charged Particle Detector
Conventional scintillation radiation detectors make use of materials that emit light when hit by ionizing radiation. These large, bulky scintillators range anywhere from 6 inches to 6 feet in size. They are attached to glass photomultiplier tubes (PMTs), which are fragile, require high voltages, and are extremely sensitive to temperature changes. Conventional detectors also include a wave shifter (a material with a dopant to re-emit the scintillator light to match the sensitivity of the PMT or photodiode) which reduces efficiency and introduces unwanted weight and bulk. Glenn's particle counter overcomes these challenges. A prototype was constructed from off-the-shelf components, and features a small scintillator (less than six inches long) and a low-voltage, UV-sensitive, wide-bandgap photodiode as the detector. Careful matching of the properties of the light emitted from the scintillator, and tailoring the sensitivity of the photodiode eliminates the need for a PMT and a wave shifter, not only saving space, weight, and power but also eliminating potential failure modes. By using wide-bandgap detectors, it can operate in changing temperature, vibration, pressure, and gravity conditions without need for a temperature compensation system. Built from solid-state components, Glenn's device is compact and robust.
Cryostat-100
Cryostat-100 combines the best features of previous cryostats developed by NASA, while offering new features and conveniences. This unit can readily handle the full range of cryogenic-vacuum conditions over several orders of magnitude of heat flux. Guide rings, handling tools, and other design items make insulation change-out and test measurement verification highly reliable and efficient to operate. The new apparatus requires less ancillary equipment (it is not connected to storage tank, phase separator, subcooler, etc.) to operate properly. It is top-loading, which makes disassembly, change-out, and instrumentation hook-up much faster. The thermal stability is improved because of internal vapor plates, a single-tube system of filling and venting, bellows feed-throughs, Kevlar thread suspensions, and heavy-wall stainless-steel construction.
The cold mass of Cryostat-100 is 1m long, with a diameter of 168 mm. The test articles can therefore be of a corresponding length and diameter, with a nominal thickness of 25.4 mm. Shorter lengths are acceptable, and thicknesses may be from 0 mm to 50 mm. Tests are conducted from ambient pressure (760 torr) to high vacuum (below 110-4 torr) and at any vacuum pressure increment between these two extremes. The residual gas (and purge gas) is typically nitrogen but can be any purge gas, such as helium, argon, or carbon dioxide.
Typically, eight cold vacuum pressures are performed for each test series. The warm boundary temperature is approximately 293 K, and the cold boundary temperature is approximately 78 K. The delta temperature for the cryogenic testing is therefore approximately 215 K. A unique lift mechanism provides for change-out of the insulation test specimens. It also provides for maintenance and other operations in the most effective and time-efficient ways. The lift mechanism is also a key to the modularity of the overall system.
Miniaturized Astrometric Alignment Sensor
The Miniaturized Astrometric Alignment Sensor advances satellite capabilities for astrophysical measurements, necessary for formation flying, relative navigation, and virtual telescope capabilities. The sensor is a single assembly consisting of a small, low powered camera assembly. The sensor detects stellar objects from which both stellar and object tracking are performed. The sensors components consist of a low power camera assembly, interchangeable lenses, camera power supply, and image processing software and algorithms. The system functions by searching and identifying objects in the camera's field of view and tracking the objects against a selected star pattern with a central body of interest in the sensor's field of view.
The Miniaturized Astrometric Alignment Sensor makes it possible to measure a spacecrafts altitude and orientation with respect to known stellar objects. The instrument takes an image of a patch of sky, identifies the stars in that field of view, and compares the field view with a stored star map. The data is processed with a dedicated processor attached to the instrument to spell out the attitude and orientation of a spacecraft.
Multi-Spectral Imaging Pyrometer
This NASA technology transforms a conventional infrared (IR) imaging system into a multi-wavelength imaging pyrometer using a tunable optical filter. The actively tunable optical filter is based on an exotic phase-change material (PCM) which exhibits a large reversible refractive index shift through an applied energetic stimulus. This change is non-volatile, and no additional energy is required to maintain its state once set. The filter is placed between the scene and the imaging sensor and switched between user selected center-wavelengths to create a series of single-wavelength, monochromatic, two-dimensional images. At the pixel level, the intensity values of these monochromatic images represent the wavelength-dependent, blackbody energy emitted by the object due to its temperature. Ratioing the measured spectral irradiance for each wavelength yields emissivity-independent temperature data at each pixel. The filter’s Center Wavelength (CWL) and Full Width Half Maximum (FWHM), which are related to the quality factor (Q) of the filter, are actively tunable on the order of nanoseconds-microseconds (GHz-MHz). This behavior is electronically controlled and can be operated time-sequentially (on a nanosecond time scale) in the control electronics, a capability not possible with conventional optical filtering technologies.
Miniaturized High-Speed Modulated X-Ray Source (MXS)
The MXS produces electrons by shining UV light from an LED onto a photocathode material such as magnesium. The electrons are then accelerated across several kV and into a chosen target material; deceleration produces X-rays characteristic of the target. The MXS uses an electron multiplier for high X-ray production efficiency.
The MXS is more compact, rugged, and power-efficient than standard X-ray sources. It can be manufactured using commercially available components and 3D printed housing, resulting in a low cost to manufacture. Unlike traditional X-ray sources, the MXS does not require a filament or vacuum and cooling systems. Most importantly, enabling rapid and arbitrary modulation allows using X-rays in the time domain, a new dimension to X-ray applications.