Dust-Repelling Coating for Thermal Radiators

Materials and Coatings
Dust-Repelling Coating for Thermal Radiators (KSC-TOPS-105)
Incorporating Electrodynamic Dust Shield into Thermal Radiators
Overview
Space is a very unforgiving environment. Charged particles, vacuum, and thermal extremes are just a few of the conditions that make this environment challenging to explore. Lunar dust on the surface of the Moon adds complexity to this situation. Dust can be a health hazard to astronauts if they breathe it in, as well as degrade materials, decrease power generation of solar panels, and cause gasket leaks. It also acts as a blackbody, becoming hot if left in direct sunlight. This is a problem for thermal radiators where the main function is to radiate heat away from an object. If dust lands on the thermal radiator, the unit will less effectively reject heat, and it will overheat. This can lead to mission failure. Therefore, methods to mitigate the accumulation of dust need to be developed. The electrodynamic dust shield (EDS) is capable of actively removing dust from thermal radiator surfaces. NASA scientists and engineeers have invented a novel efficient coating system with EDS capabilities for thermal radiators.

The Technology
State-of-the-art (SOTA) EDS technology includes the addition of a dielectric substrate, the EDS electrodes, and a dielectric cover layer. Typically, this multilayer stack-up for thermal radiator EDSs are built as a stand-alone and placed directly on top of the thermal radiator base and covered with the thermal control material. This new coating system represents an alternative EDS approach that integrates with the thermal radiator's thermal control coating system. The approach involves utilizing the thermal control coating in multiple functional capacities within the EDS configuration. The thermal control coating properties are leveraged to provide electrical insulation characteristics suitable for EDS operation while maintaining thermal performance requirements. The EDS configuration incorporates conductive elements positioned within the thermal control coating structure. The thermal control coating is applied using processes compatible with standard thermal radiator construction methods. The conductive elements are integrated during the coating application sequence. This integrated EDS approach incorporated into a thermal radiator system reduces certain components compared to SOTA EDS systems. The reduction in components offers potential benefits in system mass, thermal performance characteristics, and manufacturing complexity. The approach may reduce certain failure modes associated with interface layers and thermal expansion effects. This EDS configuration allows for enhanced flexibility in thermal radiator design parameters.
Benefits
  • Removes traditional adhesive and dielectric layers from the EDS, reducing the risk of delamination
  • Simplicity allows for a more flexible design
  • Reduced layers reduces the mass of the EDS
  • Thinner EDS allows for improved thermal performance
  • Allows for more simplistic manufacturing

Applications
  • On landers
  • On rovers
  • On many permanent structures or planetary bodies
Technology Details

Materials and Coatings
KSC-TOPS-105
KSC-14698
Similar Results
sail boat
Particle Contamination Mitigation Methods
The following methods can be used individually or in combination to generate superhydrophobic surfaces: Synthesis of novel copolyimide oxetanes with unique surface properties The technology is the synthesis of a polyimide coating or film with a modified surface chemistry shown in Figure 1. A minor amount of an oxetane reactant containing fluorine is added to the polyimide, and the oxetane preferentially migrates to the surface, enabling relatively high concentrations of fluorine at the surface, without compromising the functional performance of the bulk of the polymide coating/film. The copolymers exhibit mitigation of particle adhesion and fouling from exposure to various particulate and biological contaminants and exhibit reduced surface energy and increased surface fluorine content at extremely low oxetane loadings relative to the imide matrix (see Figure 2). Additionally, the short fluorinated carbon chains do not bioaccumulate, reducing the environmental impact of these materials. Modifying surface energy via laser ablative surface patterning This method uses a laser to create nanoscale patterns in the surface of a material to increase the hydrophobicity of the surface (see Figure 2). The benefits of hydrophobic surfaces include decreases in friction and increases in self-cleaning properties. This is an advantageous method of surface modification because it is fast and single-step, promises to be scalable, requires no chemicals, could be applied to a variety of materials, and does not require a planar surface for patterning.
Self-Cleaning Coatings for Space or Earth
The new transparent EDS technology is lighter, easier to manufacture, and operates at a lower voltage than current transparent EDS technologies. The coating combines an optimized electrode pattern with a vapor deposited protective coating of SiO2 on top of the electrodes, which replaces either polymer layers or manually adhered cover glass (see figure on the right). The new technology has been shown to achieve similar performances (i.e., over 90% dust clearing efficiency) to previous technologies while being operated at half the voltage. The key improvement of the new EDS coating comes from an innovative method to successfully deposit a protective layer of SiO2 that is much thinner than typical cover glass. Using vapor deposition enables the new EDS to scale more successfully than other technologies that may require more manual manufacturing methods. The EDS here has been proven to reduce dust buildup well under vacuum and may be adapted for terrestrial uses where cleaning is done manually. The coatings could provide a significant improvement for dust removal of solar cells in regions (e.g., deserts) where dust buildup is inevitable, but water access is limited. The EDS may also be applicable for any transparent surface that must remain transparent in a harsh or dirty environment. The related patent is now available to license. Please note that NASA does not manufacturer products itself for commercial sale.
Self-Cleaning Seals
This NASA innovation applies the concepts of electrodynamic dust shielding (EDS) to develop seals (e.g., O-rings) with active self-cleaning capabilities. NASA’s self-cleaning seals are manufactured in the following manner: A seal with a conductive surface (or otherwise fabricated to be conductive) is generated and an electrical connection, lead or electrode is attached. Next, a dielectric material is coated or placed over the conductive surface of the seal. (NOTE: Using conductive elastomer materials eliminates the need for a conductive cover layer) A high voltage (nominally >1kV) power supply is connected to the conductive layer on the seal and grounded to the metallic groove or gland that houses the seal. Given the design, dust accumulates on the outer dielectric layer (a high-voltage insulator) of the seal. To clean the seal, a time varying alternating voltage is applied from the power supply, through the high voltage lead and onto the conductive layer of the seal. When this voltage is applied, the resulting electric field produces Coulomb and dielectrophoretic forces that cause the dust to be repelled from the sealing surface. In practice, NASA’s self-cleaning seals could be operated in continuous cleaning mode (actively repelling dust at all times, preventing it from ever contacting the seal surface) or in a periodic cleaning cycle mode (removing dust from the seal surface at regular intervals). NASA’s self-cleaning seals have been prototyped and demonstrated to be highly effective at dust removal. The invention could serve as the basis of an active, self-cleaning seal product line marketed for in-space and/or terrestrial applications. Additionally, companies developing space assets destined for operation on dusty planetary surfaces (e.g., the Moon) may be interested in leveraging the technology to protect seals from dust/regolith accumulation, ensuring continuous low leakage operations.
PADS Device
Dust Accumulation Sensor Provides In Situ Monitoring
Previous techniques for measuring dust accumulation, mostly de-pendent on solar cell output, were limited by their inability to distin-guish dust effects from other factors like incident radiation and radiation damage. These techniques were less effective in environ-ments with inconsistent solar flux and future missions, such as the Lunar South Pole, and lacked versatility in adapting to diverse envi-ronmental conditions. The PADS device embraces success over these challenges, and reflects enhanced features over prior iterations to also allow for space environments. Key design features begin with the customizable mechanical design of the PADS device for use in space environments, heaters with imbedded precision temperature sensors, a selected optical coating for the device coupons that are calibrated on high-fidelity thermal modeling and validated with ground-based testing to simulate the space environment of interest (including dusting with simulants representative of the planetary-body soil/regolith), and a control circuit for precision control/matching of the thermal inputs to the sensor via the heaters. Retainers with mount isolators are implemented to ensure the stacked layers within the device do not dislodge during high vibration or gravitational loads during launch. For operation, the PADS device is installed at the point of interest (e.g., space vehicle surface, extraterrestrial equipment) to quantify dust accumulation. Power and data transfer are done through cabling to the space vehicle system or can be provided standalone. A control circuit/algorithm adjusts the power to the heaters to precisely match the temperature setpoints. Ground testing in the simulated space environment conditions of interest creates a calibration plot of effec-tive emittance versus dust density, and allows determination of the degradation in emittance as the dust increases on the surface. Testing on the PADS device has been completed in a simulated lunar environment and data has been collected to enable sensor calibration for its use on the Moon. It is currently poised for integration into a lander for flight testing. Although the PADS device is intended for use in a burgeoning space industry and requisite environments – but given that the PADS device is partially comprised of programmable sensors in conjunction with optically coated coupons that can be tailored for custom use - it or its constituent components could be modified for terrestrial applications such as surface dust monitoring on photovoltaic panels or potentially combustible dust on various industrial surfaces.
Deployed Electromagnetic Radiation Deflector Shield
The typical remedy for space radiation hazards has been to harden the space vehicle's electronics and software from these high-speed particles and placing heavy shielding in these manned or sensitive areas. This adds considerable weight and cost to the launch vehicle, reduces payload capacity, and is passive in nature. SEPs and CMEs can be deflected by a magnetic field to pass around the spacecraft and not be absorbed by it. This deflection of solar wind and radiation is due to the Lorentz force. However, a magnetic field that is attached to the spacecraft and enclosing it would cause other shielding issues with equipment and would require much more electrical power to operate due to the need to enclose the entire spacecraft within that attached magnetic field. This would also perturb the data collection and transmissions of the spacecraft. Additionally, the generated magnetic field can capture some of the solar radiation as a plasma within the magnetic torus further impeding scientific data collection due to its close position to the spacecraft. DERDS is deployed in space away from the protected spacecraft to remain between the radiation source and the spacecraft. It utilizes on board cosmic ray sensors to note the need for the strength of the magnetic field, and on-board sensors to position itself directly in line between the radiation source and the protected spacecraft or station. Onboard computers and thrusters maintain the required position, so that the magnetic field is positioned for the best deflection angle based on incoming radiation. The DERDS magnetic field can be varied in both direction, intensity, and time by use of both AC and DC electrical power inputs and varied as needed to optimize the deflection angle and power requirements. The magnetic field can also be perturbed in irregular or set patterns by onboard computers and sensors as needed to maintain the proper deflection of SEPs, CMEs, and other cosmic rays. DERDS creates a magnetic field that will not need to be so large (with a much larger power requirement) as to encompass the entire protected spacecraft, and the magnetic field will not interfere with the spacecraft.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo X Logo Linkedin Logo Youtube Logo