Free-space Fiber Optic Laser Rod

Optics
Free-space Fiber Optic Laser Rod (LAR-TOPS-259)
An innovative approach that removes the limitation on peak power densities that exist for fiber lasers
Overview
NASA's Langley Research Center has developed a compact and highly efficient multi-purpose laser rod. This system employs a modular laser design with highly efficient and compact components. The laser consists of distinct building blocks to achieve wavelengths of 1.0, 1.5, and 2.0 microns. Amplifier modules are based on a novel hybrid fiber rod concept. By confining the otherwise highly divergent pump radiation to a small channel via total internal reflection at a moderately high numerical aperture interface, the low brightness diodes can pump with high power density over a moderately long absorption path, thereby achieving highly efficient pump absorption.

The Technology
For this new laser concept, a relatively short but large core fiber doped by active lasing material is used in place of a conventional solid state crystal as the amplifier gain media in a free-space configuration. The technology avoids the usual problems of low thresholds for catastrophic optical damage and other nonlinear loss processes in fiber lasers by increasing the fiber core diameter of a standard 9 microns single mode fiber to the order of 1 mm, thereby permitting peak powers to be increased by factors of 10,000. The usual degradation of single mode propagation in large diameter fibers is avoided by keeping fiber lengths short, thereby staying within a free-space single mode propagation regime.
Cross section of hybrid fiber rod. Image credit: NASA
Benefits
  • Allows peak powers to be increased by a factor of 10,000
  • Achieves optical-to-optical efficiency that approaches theoretical quantum limit

Applications
  • Medical
  • Military
  • Telecommunications
  • Aeronautics and Space
Technology Details

Optics
LAR-TOPS-259
LAR-18787-1
9,831,629
Similar Results
https://www.flickr.com/photos/gsfc/8407508991
Self-Phase-Locked Distributed Gain Laser Architecture
NASA Goddard Space Flight Center has developed a laser architecture to coherently combine energy from spatially distributed gain sources. Using a combination of lenslet arrays (to split and combine separate beams) or diffractive optical elements, each source can be phase-matched into an effective single source.
Legitimately accessed and used from Pexel under the Pexel license agreement, which allows for use of any photos on Pexel without attribution. Accessible here: https://www.pexels.com/photo/a-wind-farm-at-sunset-8420517/
Receiver for Long-distance, Low-backscatter LiDAR
The NASA receiver is specifically designed for use in coherent LiDAR systems that leverage high-energy (i.e., > 1mJ) fiber laser transmitters. Within the receiver, an outgoing laser pulse from the high-energy laser transmitter is precisely manipulated using robust dielectric and coated optics including mirrors, waveplates, a beamsplitter, and a beam expander. These components appropriately condition and direct the high-energy light out of the instrument to the atmosphere for measurement. Lower energy atmospheric backscatter that returns to the system is captured, manipulated, and directed using several of the previously noted high-energy compatible bulk optics. The beam splitter redirects the return signal to mirrors and a waveplate ahead of a mode-matching component that couples the signal to a fiber optic cable that is routed to a 50/50 coupler photodetector. The receiver’s hybrid optic design capitalizes on the advantages of both high-energy bulk optics and fiber optics, resulting in order-of-magnitude enhancement in performance, enhanced functionality, and increased flexibility that make it ideal for long-distance or low-backscatter LiDAR applications. The related patent is now available to license. Please note that NASA does not manufacturer products itself for commercial sale.
Continuous Wave Laser Source for Injection Seeding
NASA's CW Laser Source for Injection Seeding uses a single laser diode (LD) to produce multiple wavelengths. Depending on the application, the seed laser may or may not be locked to a wavelength reference. For example, in atmospheric differential absorption lidar (DIAL) active remote sensing applications, the seed laser has to be locked and referenced to the species of interest using gas cells. In this context, the seed laser source is first locked to an absorption feature and the generated wavelength is used as a reference from which other offset wavelengths are generated. However, if the requirement calls only to avoid atmospheric absorption then locking may not be required. Using this new technology, an airborne 2-micron triple pulse integrated path differential absorption (IPDA) LIDAR instrument has been developed at NASA Langley Research Center to measure the column content of atmospheric H2O and CO2 simultaneously and independently. This is achieved by transmitting three successive high-energy pulses, seeded at three different wavelengths, through the atmosphere. The three pulses are emitted 200 microseconds apart and repeated at 50 Hz. The seeding wavelengths were selected to achieve minimum measurement interference from one molecule to the other. Typically, this requires four different CW lasers for seeding. A part of that effort focused on adaptive targeting, which is based on the tuning capability of the on-line wavelength to meet a certain measurement objective depending on observational time and location. The off-line wavelength was assumed constant. The tuning capability can be achieved using the claimed seeding technique using a voltage-controlled oscillator for the on-line and fixed oscillator for the off-line.
Pulsed 2-Micron Laser Transmitter
The new NASA LaRC Pulsed 2-Micron Laser Transmitter for Coherent 3-D Doppler Wind Lidar Systems is an innovative concept and architecture based on a Tm:Fiber laser end-pumped Ho:YAG laser transmitter. This transmitter meets the requirements for space-based coherent Doppler wind lidar while reducing the mission failure risks. A key advantage of this YAG based transmitter technology includes the fact that the design is based on mature and low-risk space-qualified YAG host crystal. The transmitter operates at a 2096 nm wavelength using Ho:YAG, resulting in high atmospheric transmission (>99%), versus a transmitter operating at 2053 nm using co- doped Tm:Ho:LuLiF, which suffers limited transmission (90%) due to water vapor interference. In-band pumping through Tm:Fiber pump Ho:YAG architecture offers lower quantum defect from 1908 to 2096 nm (9.1%) compared to traditionally used co-doped Tm:Ho:LuLiF of 792 to 2051 nm (61%). The transmitter has an efficient pump compared to LuLF, since YAG has 27% higher pump absorption and 52% lower reabsorption of the emitted 2-micron, resulting in higher efficiency and lower heat load. Being isotropic, YAG is amenable for spatial-hole burning mitigation which supports linear cavity architecture without compromising injection seeding quality. This attribute is important in designing a compact, stable, high seeding efficiency laser. A folded linear cavity for long pulse (>200 ns), transform limited line-width (2.2 MHz) and high beam quality (M2 = 1.04) - the most critical parameters for coherent detection - are easier to achieve using YAG compared to LuLF. Lower heat load results in high repetition rate (>300 Hz) operation, which allows higher probability of wind measurements through broken clouds, off clouds, and below clouds, thus reducing errors and increasing science data product quantity and quality.
Device prototype in use
Optical Head-Mounted Display System for Laser Safety Eyewear
The system combines laser goggles with an optical head-mounted display that displays a real-time video camera image of a laser beam. Users are able to visualize the laser beam while his/her eyes are protected. The system also allows for numerous additional features in the optical head mounted display such as digital zoom, overlays of additional information such as power meter data, Bluetooth wireless interface, digital overlays of beam location and others. The system is built on readily available components and can be used with existing laser eyewear. The software converts the color being observed to another color that transmits through the goggles. For example, if a red laser is being used and red-blocking glasses are worn, the software can convert red to blue, which is readily transmitted through the laser eyewear. Similarly, color video can be converted to black-and-white to transmit through the eyewear.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo