Application of Leading Edge Serration and Trailing Edge Foam for Undercarriage Wheel Cavity Noise Reduction
aerospace
Application of Leading Edge Serration and Trailing Edge Foam for Undercarriage Wheel Cavity Noise Reduction (LAR-TOPS-287)
Flight tests show significant promise for new noise reduction techniques
Overview
The Acoustic Research Measurement (ARM) flights at NASA's Armstrong Flight Research Center in the US, tested technology to address airframe noise, or noise that is produced by non-propulsive parts of the aircraft, during landing. The flights successfully combined several technologies to achieve a greater than 70 per cent reduction in airframe noise.
The Technology
Among the tests, landing gear cavities, a known cause of airframe noise, were evaluated. These are the regions where the landing gear deploys from the main body of an aircraft, typically leaving a large cavity where airflow can get pulled in, creating noise. NASA applied two concepts to these sections, including a series of chevrons placed near the front of the cavity with a sound-absorbing foam at the trailing wall, as well as a net that stretched across the opening of the main landing gear cavity. This altered the airflow and reduced the noise resulting from the interactions between the air, the cavity walls, and its edges.
Benefits
- The design and materials are lightweight, low cost, and easily adaptable to new designs
- Requires virtually no maintenance and is not flight critical
- Easy to inspect and to change out
- Impressive reductions in aircraft noise during landing
Applications
- Especially suited to commercial and business jet aircraft
Technology Details
aerospace
LAR-TOPS-287
LAR-19213-1
Similar Results
Statistical Audibility Prediction (SAP) Algorithm
A method for predicting the audibility of an arbitrary time-varying noise (signal) in the presence of masking noise is described in "An Algorithm for Statistical Audibility Prediction (SAP) of an Arbitrary Signal in the Presence of Noise" published in the Journal of the Audio Engineering Society (Vo. 69, No. 9, September 2021). The SAP method relies on the specific loudness, or loudness perceived through the individual auditory filters, for accurate statistical estimation of audibility vs. time. As such, this work investigated a new hypothesis that audibility is more accurately discerned within individual auditory filters by a higher-level, decision-making process. Audibility prediction vs. time is intuitive since it captures changes in audibility with time as it occurs, critical for the study of human response to noise. Concurrently, time-frequency prediction of audibility may provide valuable information about the root cause(s) for audibility useful for the design and operation of sources of noise. Empirical data, gathered under a three-alternative forced-choice (3AFC) test paradigm for low-frequency sound, has been used to examine the accuracy of SAPs.
Future work should involve additional studies to examine the performance of SAP with realistic ambient noise and signals with higher-frequency content.
Interactive Sonic Boom Display
A supersonic shock wave forms a cone of pressurized air molecules that propagates outward in all directions and extends to the ground. Factors that influence sonic booms include aircraft weight, size, and shape, in addition to its altitude, speed, acceleration and flight path, and weather or atmospheric conditions. NASA's Real-Time Sonic Boom Display takes all these factors into account and enables pilots to control and mitigate sonic boom impacts.
How It Works
Armstrong's technology incorporates 3-dimensional (3D) Earth modeling and inputs of 3D atmospheric data. Central to the innovation is a processor that calculates significant information related to the potential for sonic booms based on an aircraft's specific operation. The processor calculates the sonic boom near a field source based on aircraft flight parameters, then ray traces the sonic boom to a ground location taking into account the near field source, environmental condition data, terrain data, and aircraft information. The processor signature ages the ray trace information to obtain a ground boom footprint and also calculates the ray trace information to obtain Mach cutoff condition altitudes and airspeeds.
Prediction data are integrated with a real-time, local-area moving-map display that is capable of displaying the aircraft's currently generated sonic boom footprint at all times. A pilot can choose from a menu of pre-programmed maneuvers such as accelerations, turns, or pushovers and the predicted sonic boom footprint for that maneuver appears on the map display. This allows pilots to select or modify a flight path or parameters to either avoid generating a sonic boom or to place the sonic boom in a specific location. The system also provides pilots with guidance on how to execute a chosen maneuver.
Why It Is Better
No other system exists to manage sonic booms in-flight. NASA's approach is unique in its ability to display in real time the location and intensity of shock waves caused by supersonic aircraft. The system allows pilots to make in-flight adjustments to control the intensity and location of sonic booms via an interactive display that can be integrated into cockpits or flight control rooms. The technology has been in use in Armstrong control rooms and simulators since 2000 and has aided several sonic boom research projects.
Aerospace companies have the technological capability to build faster aircraft for overland travel; however, the industry has not yet developed a system to support flight planning and management of sonic booms. The Real-Time Sonic Boom Display fills this need. The capabilities of this cutting-edge technology will help pave the way toward overland supersonic flight, as it is the key to ensuring that speed increases can be accomplished without disturbing population centers.
Infrasound Sensor Technology
Large aircraft can generate air vortices in their wake, turbulence that can prove hazardous to aircraft that follow too closely. Because wake vortices are invisible, all takeoffs at busy airports are spaced several minutes apart. This separation gives the vortices time to dissipate, even though they only occur 10% of the time, with resulting loss of operational efficiency. Similarly, clear air turbulence is invisible and can also be hazardous to aircraft. By detecting such disturbances through their infrasound emissions, precautions can be taken to avoid them.
Other phenomena can be detected through infrasound, including tornadoes, helicopters on the other side of mountains, underground nuclear explosions and digging tunnels. Through the unique properties of infrasound, many of these can be detected from hundreds of miles away. NASA's infrasound sensor is a highly refined microphone that is capable of detecting acoustic waves from 20 Hz down to dc, the infrasound range. The design is robust and compact, eliminating the bulk and weight found in other technologies. Where most alternative methods are restricted to certain weather conditions and locations,
the NASA sensor filters noise from wind and other sources, allowing its use under any weather or geographic conditions.
Device for Providing Real-Time Rotorcraft Noise Abatement Information
The magnitude and direction of rotor noise radiation is determined by the aerodynamic operating state of the rotor commonly referred to as the "Blade-Vortex Interaction" which occurs when the wake vortex trailing from a preceding rotor blade interacts with the front edge of the following rotor blade. The wake vortex causes a rapid change in the blade loading, which results in the generation of high amplitude, impulsive, and highly directional noise. The occurrence, magnitude, and directionality of Blade-Vortex Interaction noise is very sensitive to the rotor operating state because it is dependent on the relative positions of the rotor and its vortex wake. By providing the rotorcraft pilot with information about annoying noise levels currently being emitted by the rotorcraft and its effects on the ground, corrective action can be taken to change the operating state of the vehicle to minimize or avoid annoyance due to such rotor noise sources.
During operation, the pilot would activate the device before or during operation of the rotorcraft. The device displays the noise abatement information through a display unit, informing the pilot about the current acoustic state of the vehicle and providing guidance on how to change the vehicle performance and acoustic state to avoid objectionable blade-vortex Interaction noise. Annoyance footprint information can then be used by the pilot to change the flight path of the vehicle such that the annoyance footprint will not extend into noise sensitive areas.
Low, Drag, Variable-Depth Acoustic Liner
The drag penalty incurred by a conventional acoustic liner is dependent, to a large extent, on the perforate open area ratio (porosity) of the perforated facesheet. As the open area ratio is decreased, the facesheet behaves more like a solid surface and the drag is reduced. However, if the open area ratio is too small, the external acoustic field will be isolated from the resonators (in the liner), and the system will not provide noise reduction.
The technology is a new type of variable-depth acoustic engine liner, which will reduce the drag and potentially manufacturing cost of this class of engine liner. Individual resonators within a conventional variable-depth liner are effective near resonance, but provide less acoustic benefit at other frequencies. In fact, at anti-resonance, a resonator behaves similar to a hard wall (i.e., the normal component of the particle velocity at the inlet is zero). Therefore, the proposed innovation couples neighboring resonators (tuned for different frequencies) together within the core of the liner. In other words, multiple resonators share a single inlet/port. Sharing inlets reduces the overall number of openings needed to maintain the acoustic performance of the liner by a factor of two or more. Reducing the open area ratio will in turn reduce the liner drag, and will reduce the number of holes that have to be machined into the facesheet, potentially reducing manufacturing cost.
The functional operation of the proposed innovation will be identical to conventional engine liners. The innovation enables a reduction of the open area ratio of the perforated facesheet (by a factor of two or more) without degrading the acoustic performance. This will decrease the liner drag, and has the potential to reduce the manufacturing cost of the liner, since fewer holes need to be machined in the facesheet.