Statistical Audibility Prediction (SAP) Algorithm

Information Technology and Software
Statistical Audibility Prediction (SAP) Algorithm (LAR-TOPS-360)
Determining the audibility of sound
Overview
Noise is difficult to escape in our daily lives. Such noise is generated by transportation vehicles, industrial equipment, hospital machines, phones, alarms, crowds, and more. Some sounds we want to suppress (e.g., airplane noise vs. conversation) and others we want to enhance (e.g., our ringing phone vs. subway noise). Predicting the extent that one sound is heard over another is difficult, yet could help engineers to better design for sound management. Innovators at the NASA Langley Research Center (LaRC) and the National Institute of Aerospace (NIA) have developed an algorithm for Statistical Audibility Prediction (SAP) of an arbitrary signal in the presence of noise. The SAP algorithm compares the loudness of signal and noise samples at matching time instances to assess audibility versus time. The continued development of this algorithm could allow engineers to suppress how we hear noise relative to sounds of interest. SAP can be implemented either as software or hardware. The algorithm has been tested using subject response data gathered in the Exterior Effects Room (EER) at NASA LaRC.

The Technology
A method for predicting the audibility of an arbitrary time-varying noise (signal) in the presence of masking noise is described in "An Algorithm for Statistical Audibility Prediction (SAP) of an Arbitrary Signal in the Presence of Noise" published in the Journal of the Audio Engineering Society (Vo. 69, No. 9, September 2021). The SAP method relies on the specific loudness, or loudness perceived through the individual auditory filters, for accurate statistical estimation of audibility vs. time. As such, this work investigated a new hypothesis that audibility is more accurately discerned within individual auditory filters by a higher-level, decision-making process. Audibility prediction vs. time is intuitive since it captures changes in audibility with time as it occurs, critical for the study of human response to noise. Concurrently, time-frequency prediction of audibility may provide valuable information about the root cause(s) for audibility useful for the design and operation of sources of noise. Empirical data, gathered under a three-alternative forced-choice (3AFC) test paradigm for low-frequency sound, has been used to examine the accuracy of SAPs. Future work should involve additional studies to examine the performance of SAP with realistic ambient noise and signals with higher-frequency content.
The graphs shown illustrate validation test cases using pure tones (left) and complex tones
(right). The algorithm predictions for low frequency signals show agreement to subject
response data.
Benefits
  • Less noise pollution: Can help engineers design systems that generate noise that is less bothersome.
  • Better sound selectivity: Can lead to systems that generate sounds more likely to be heard over background noise.
  • Enhanced understanding of audibility: Can assist scientists and engineers to better understand why certain sounds are more or less audible than others, thus further enhancing sound design.

Applications
  • Noise management
  • Sound engineering
  • Transportation vehicles (e.g., aircraft, rotorcraft, drones, unmanned aerial vehicles, trucks, automobiles, trains, buses, etc.)
  • Industrial equipment (e.g., as found in factories, hospitals, businesses, residences, etc.)
  • Communication decives (e.g., phones, alarms, etc.)
  • Hearing aids
  • Signal processing
Technology Details

Information Technology and Software
LAR-TOPS-360
LAR-19736-1
12,003,951
M. Rafaelof, and K. Wendling, "An Algorithm for Statistical Audibility Prediction (SAP) of an Arbitrary Signal in the Presence of Noise," J. Audio Eng. Soc., vol. 69, no. 9, pp. 672-682, (2021 September.)
Similar Results
Simulated vorticity field generated by flow past a full-scale Gulfstream aircraft in landing configuration
Application of Leading Edge Serration and Trailing Edge Foam for Undercarriage Wheel Cavity Noise Reduction
Among the tests, landing gear cavities, a known cause of airframe noise, were evaluated. These are the regions where the landing gear deploys from the main body of an aircraft, typically leaving a large cavity where airflow can get pulled in, creating noise. NASA applied two concepts to these sections, including a series of chevrons placed near the front of the cavity with a sound-absorbing foam at the trailing wall, as well as a net that stretched across the opening of the main landing gear cavity. This altered the airflow and reduced the noise resulting from the interactions between the air, the cavity walls, and its edges.
High-Fidelity Sonic Boom Propagation Tool
The sBOOMTraj tool offers an updated approach to accurately predict sonic boom ground signatures for supersonic aircraft. The tool is based on the numeric solution of the augmented Burgers equation where the regular Burgers equation is augmented with absorption, molecular relaxation, atmospheric stratification, and ray tube spreading terms in addition to the non-linear term from the regular equation. The primary idea behind such augmenting is that atmospheric losses are captured, which results in more realistic sonic boom predictions compared to linear theory methods. While previous iterations of the software (sBOOM) were limited to single point analysis (i.e., a point in supersonic climb or cruise), sBOOMTraj extends the prediction of sonic boom to multiple points along the supersonic mission. This includes updated functionality to handle aircraft trajectories and maneuvers as well as inclusion of all relevant noise metrics. The improvements allow efficient computation of sonic boom loudness across the entire supersonic mission of the aircraft. The sBOOMTraj tool can predict ground signatures in the presence of atmospheric wind profiles, and can even handle non-standard atmospheres where users provide temperature, wind, and relative or specific humidity distributions. Furthermore, sBOOMTraj can predict off-track signatures, ground intersection location with respect to the aircraft location, the time taken for the pressure disturbance to reach the ground, lateral cut-off locations, and focus boom locations. The software has the ability to easily interface with other stand-alone tools to predict the magnitude of focus, post-focus, and evanescent booms, and also has the ability to handle different kinds of input waveforms used in design exercises. The sBoomTraj tool could be extremely useful in supersonic aircraft operations as it can predict where sonic booms hit the ground in addition to providing the magnitude of sonic boom loudness levels using physics-based simulations. Using this tool, pilots may be able to steer supersonic aircraft away from populated areas while also allowing real-time adjustments to their flight trajectories, allowing trade-offs associated with sonic boom, performance and acceptability. The predicted sonic boom loudness contours during supersonic flight may also be used in supersonic aircraft design and development, including certification of aircraft under future regulations that may be imposed. sBOOMTraj offers a revolutionary approach to mitigating sonic boom through its unique sonic boom adjoint equations. This potentially has immediate and realizable benefits in supersonic aircraft design when integrated with other disciplines. The NASA technology can potentially aid in supersonic aircraft operations with its integration in a cockpit interactive application that can provide feedback to the pilot on sonic boom impingement areas on the ground with real-time atmospheric and terrain updates. sBOOMTraj has the potential to support both aircraft design and operations, which is extremely rare.
Open rotor
External Aircraft Noise Reduction Liners
This technology is an evolution of acoustic liners developed for engine noise abatement that are typically located inside nacelles. The acoustic liners described here can be outfitted on external surfaces and in tight spaces. Three initial areas of the aircraft have been considered as part of an aircraft configuration incorporating an open rotor propulsion system. The three areas where the liner configurations were applied were (1) under the rotor, (2) on the upper surface of the elevon, and (3) on the surface of a strut.
Low Flying Plane
A Method for Reducing Broadband Noise
This NASA technology is ideally suited to absorb sounds below 1000 Hz (at the low end of human auditory range), which commercially available materials have struggled to absorb effectively. NASA innovators designed the acoustic liner to mimic the geometry and the low-frequency acoustic absorption of natural reeds. To provide excellent noise absorption that endures even in a variety of challenging conditions, researchers have created and tested prototypes of acoustic filters using thin and lightweight parallel-stacked tubes one-fourth to three-eights of an inch in diameter. The assembly can feature a porous or perforated face sheet positioned on one or more sides of the acoustic absorber layer to increase noise-reduction capability as needed. These filters have demonstrated exceptional acoustic absorption coefficients in the frequency range of 400 to 3000 Hz. Results indicate that these assemblies can be additively manufactured from synthetic materials, generally plastic; however, ceramics, metals, or other materials can also be used. The reeds can be narrow or wide, hollow or solid, straight or bent, etc., giving this acoustic liner remarkable flexibility and versatility to meet the needs of virtually any application. This technology effectively demonstrates that a new class of structures can now be considered for a wide range of environments and applications that need durable, lightweight, broadband acoustic absorption that is effective at various frequencies, particularly between 400 and 3000 Hz.
Low-drag liner with shared inlets.
Low, Drag, Variable-Depth Acoustic Liner
The drag penalty incurred by a conventional acoustic liner is dependent, to a large extent, on the perforate open area ratio (porosity) of the perforated facesheet. As the open area ratio is decreased, the facesheet behaves more like a solid surface and the drag is reduced. However, if the open area ratio is too small, the external acoustic field will be isolated from the resonators (in the liner), and the system will not provide noise reduction. The technology is a new type of variable-depth acoustic engine liner, which will reduce the drag and potentially manufacturing cost of this class of engine liner. Individual resonators within a conventional variable-depth liner are effective near resonance, but provide less acoustic benefit at other frequencies. In fact, at anti-resonance, a resonator behaves similar to a hard wall (i.e., the normal component of the particle velocity at the inlet is zero). Therefore, the proposed innovation couples neighboring resonators (tuned for different frequencies) together within the core of the liner. In other words, multiple resonators share a single inlet/port. Sharing inlets reduces the overall number of openings needed to maintain the acoustic performance of the liner by a factor of two or more. Reducing the open area ratio will in turn reduce the liner drag, and will reduce the number of holes that have to be machined into the facesheet, potentially reducing manufacturing cost. The functional operation of the proposed innovation will be identical to conventional engine liners. The innovation enables a reduction of the open area ratio of the perforated facesheet (by a factor of two or more) without degrading the acoustic performance. This will decrease the liner drag, and has the potential to reduce the manufacturing cost of the liner, since fewer holes need to be machined in the facesheet.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo