Secure Optical Quantum Communications

communications
Secure Optical Quantum Communications (LEW-TOPS-108)
Novel production and use of entangled-photon pairs enhances quantum communications capability
Overview
NASA's Glenn Research Center has developed a method of using entangled-photon pairs to produce highly secure mobile communications that require mere milliwatts of power. Conventional gas Argon-ion laser sources are too large, expensive, and power-intensive to use in portable applications. By contrast, Glenn's patented optical quantum communication method produces entangled-photon pairs approximately a million times more efficiently than conventional sources, in a system that is small and light enough to be portable. Furthermore, because this method transmits digital information by detecting small temporal shifts between entangled photons, its superior signal-to-noise ratio facilitates highly secure communications in very noisy free space and fiber-optic environments. Originally developed for micro-robots used for deep space exploration, this technology represents a breakthrough for a wide variety of terrestrial, scientific, military, and other field-deployable applications including fiber-optic and satellite communications.

The Technology
In the prior art, the systems that produced photon pairs took up a great deal of space on a laboratory table, weighed several hundred pounds, consumed tens of kilowatts of electrical power, and required cooling water. These limitations greatly restricted the utility of quantum communications systems, which rely on these photon pairs. To address this issue, Glenn's innovators developed a novel system that uses a laser source, a pair of nonlinear crystals in optical contact with each other, and a fiber coupling point configured to receive a pair of single mode fibers. Pairs of polarization-entangled photons are produced through spontaneous parametric down conversion of the laser beam and provided to the fiber coupling point. The optical signal is coded at the transmitter by modulating the inter-beam delay time between pairs of entangled photons. The inter-beam delay will determine whether the photon pairs are absorbed by a fluorescer in the receiver. When absorbed, the photon pairs cause a fluorescent optical emission that a photon detector identifies. One advantage of this system is that it eliminates the need for a coincidence counter to realize the entanglement-based secure optical communications, because the absorber acts as a coincidence counter for entangled photon pairs. In addition, this modulation spectroscopy technique is ultra-secure since the delay times are very short (femtoseconds) and unresolvable by conventional photon detectors. Finally, the system uses solid-state, monolithic construction that allows for cost-effective batch-manufacturing techniques. This technology represents a significant breakthrough in the fields of communications, optics, cryptography, and surveillance.
Advance Quantum Wave Glenn's novel method uses crystals to store entangled photons, producing highly efficient and effective quantum communications
Benefits
  • Highly secure: Hides secure code in the difference of the entangled-photon pair, making interception impossible, even with current state-of-the-art technology
  • Efficient: Transmits information at very low power levels (less than a nanowatt), while using a limited number of photons
  • Versatile: Can be used in free space and with fiber optic cables
  • Economical: Permits the use of low-cost, off-the-shelf optical coatings and components
  • Compact and transportable: Enables numerous in-field applications not previously possible

Applications
  • Fiber optic communication systems
  • Free-space laser communication systems
  • Satellite communications
  • Defense technologies
  • Airborne communications
  • Surveillance systems
  • Communications between micro-robots
  • Unmanned aerial vehicle surveillance communications
  • Secure line-of-sight optical communication links
Technology Details

communications
LEW-TOPS-108
LEW-17458-2 LEW-17814-1 LEW-17915-1
Similar Results
Shutterstock 223733998
Optical De-Multiplexing Method for QKD Encryption
Classical laser communication gimbals are coupled to 105um multimodal receiving fibers for the high-power transmission of data, fine pointing, and tracking. These fibers cannot be used in free space optical communication applications using Quantum Key Distribution (QKD) since polarization state information encoded by QKD photons is not retained. To accommodate low energy QKD photons and high energy data streams necessary for encryption of optical links, the inventor adopted a space-and-wave (SAW) division de-multiplexing approach. The SAW division method uses a double clad fiber with a 9um core and a 105um 1st cladding. This arrangement captures 1590nm wavelength QKD photons in the core channel and a 1555.75nm wavelength data channel in the 1st cladding. By defining wavelength separation between 30-40nm, a single focusing lens can be used to focus only one wavelength to a diffraction limited spot (see figures included). Using this method, a QKD channel is focused to a diffraction limited spot on the 9um core of the double clad fiber. The chosen wavelength separation generates a defocused diffraction pattern with a hollow center, and with remaining optical power in concentric rings outside of the 9um core, yet inside the 105um core. The QKD signal is directed into the 9um core, and the data channel is coupled into the 105um secondary core for traditional data demodulation.
Multi-colored Lasers
Optical Tunable-Based Transmitter for Multiple High-Frequency Bands
NASA Glenn's researchers have developed a means of transporting multiple radio frequency carriers through a common optical beam. In contrast to RF infrastructure systems alone, this type of hybrid RF/optical system can provide a very high data-capacity signal communication and significantly reduce power, volume, and complexity. Based on an optical wavelength division multiplexing (WDM) technique, in which optical wavelengths are generated by a tunable diode laser (TDL), the system enables multiple microwave bands to be combined and transmitted all in one unit. The WDM technique uses a different optical wavelength to carry each separate and independent high-frequency microwave band (e.g., L, C, X, Ku, Ka, Q, or higher bands). Since each RF carrier operates at a different optical wavelength, the tunable diode laser can, with the use of an electronic tunable laser controller unit, adjust the spacing wavelength and thereby minimize any crosstalk effect. Glenn's novel design features a tunable laser, configured to generate multiple optical wavelengths, along with an optical transmitter. The optical transmitter modulates each of the optical wavelengths with a corresponding RF band and then encodes each of the modulated optical wavelengths onto a single laser beam. In this way, the system can transmit multiple radio frequency bands using a single laser beam. Glenn's groundbreaking concept can greatly improve the system flexibility and scalability - not to mention the cost of - both ground and space communications.
Airport Control Tower
The Teletenna - A Hybrid Telescope Antenna System
Initially developed for missions to Mars, Teletenna integrates RF and optical communication technologies to transmit data from deep space to Earth at extremely high speeds. The system combines a co-boresighted telescope and a Ka-band RF antenna to minimize system mass and enhance performance. Designed with an optimal focal length-to-diameter ratio, the apparatus features a classical Cassegrain geometry, including a sub-reflector in front of the RF feed which acts as a mirror for the optical signal while being transparent to the RF signal. The apparatus also mechanically and thermally isolates the RF reflector system from the optics to offer maximum stability. Teletenna was created to overcome two significant challenges to DSOC: 1) laser inefficiency due to poor alignment during spacecraft disturbances and 2) performance degradation due to lack of rigidity in vibrational environments (such as space). The first challenge is addressed by the telescope portion of this technology, which facilitates the acquisition and maintenance of the link with ease - even in less than ideal conditions. The second challenge is addressed by rigidly fixing the RF reflector to the spacecraft body and attaching the optical section to a vibration isolation platform. The result is a device that can point to within 0.5 degrees of the sun (traditional optical systems are limited to 3 degrees), allowing for approximately 20 extra days of contact time between Earth and Mars. By combining RF and optical communications, this breakthrough innovation has the power to transform communications as we know it. Glenn welcomes co-development opportunities.
Pulsed 2-Micron Laser Transmitter
The new NASA LaRC Pulsed 2-Micron Laser Transmitter for Coherent 3-D Doppler Wind Lidar Systems is an innovative concept and architecture based on a Tm:Fiber laser end-pumped Ho:YAG laser transmitter. This transmitter meets the requirements for space-based coherent Doppler wind lidar while reducing the mission failure risks. A key advantage of this YAG based transmitter technology includes the fact that the design is based on mature and low-risk space-qualified YAG host crystal. The transmitter operates at a 2096 nm wavelength using Ho:YAG, resulting in high atmospheric transmission (>99%), versus a transmitter operating at 2053 nm using co- doped Tm:Ho:LuLiF, which suffers limited transmission (90%) due to water vapor interference. In-band pumping through Tm:Fiber pump Ho:YAG architecture offers lower quantum defect from 1908 to 2096 nm (9.1%) compared to traditionally used co-doped Tm:Ho:LuLiF of 792 to 2051 nm (61%). The transmitter has an efficient pump compared to LuLF, since YAG has 27% higher pump absorption and 52% lower reabsorption of the emitted 2-micron, resulting in higher efficiency and lower heat load. Being isotropic, YAG is amenable for spatial-hole burning mitigation which supports linear cavity architecture without compromising injection seeding quality. This attribute is important in designing a compact, stable, high seeding efficiency laser. A folded linear cavity for long pulse (>200 ns), transform limited line-width (2.2 MHz) and high beam quality (M2 = 1.04) - the most critical parameters for coherent detection - are easier to achieve using YAG compared to LuLF. Lower heat load results in high repetition rate (>300 Hz) operation, which allows higher probability of wind measurements through broken clouds, off clouds, and below clouds, thus reducing errors and increasing science data product quantity and quality.
Fireman Burning Building
Polymer Electrolyte-Based Ambient Temperature Oxygen Microsensor
Conventional ambient-temperature oxygen sensors are limited in various ways: optically based sensors can be expensive and challenging to manufacture; electrochemical cells with liquid electrolytes can have limited lifetimes and become leak sources; and both types of sensors are difficult to miniaturize. These problems are addressed with Glenn's novel ambient temperature oxygen microsensor, which is based on a Nafiontm polymer electrolyte, microfabricated using thin-film technologies. In the past, one drawback of Nafiontm film has been that it can lose conductivity when the moisture content in the film is too low, potentially affecting sensor operation. Glenn researchers devised a method to use certain salts to hold water molecules in the Nafiontm film structure at room temperature. The presence of these salts provides extra sites in the film to promote proton (H+) mobility, thus improving film conductivity and overall sensor performance, particularly in arid and high-temperature environments. The innovative use of metal/metal oxide as the reference electrode enables miniaturization by eliminating the reference gas and sealing the reference electrode. The combination of interdigitized electrodes with the unique metal/metal oxide reference electrode permits sensor operation in either potentiometric or amperometric mode, as appropriate. In potentiometric mode, which measures voltage differences between working and reference electrodes in different gases, the voltage differences can be monitored with a voltmeter; however, the sensor itself does not need a power source. In room-temperature testing, the sensor achieved repeatable responses to 21 percent oxygen in nitrogen (using nitrogen as a baseline gas), and also detected oxygen from 7 to 21 percent, making Glenn's breakthrough technology usable for personal health monitoring as well as fire detection, fuel-leak detection, and environmental monitoring.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo