Circumferential Scissor Spring Enhances Precision in Hand Controllers

robotics automation and control
Circumferential Scissor Spring Enhances Precision in Hand Controllers (MSC-TOPS-113)
Spring allows tunable deflection curve for optimum controller feedback
Overview
Innovators at NASA Johnson Space Center have designed a circumferential scissor spring mechanism, that when incorporated into a hand controller, improves the restorative force to a control sticks neutral position. The design also provides for operation on a more linear portion of the spring's force deflection curve, yielding better feedback to the user. Physical hand controllers, such as translational and rotational controllers, use a non-circumferential scissor spring arrangement to return the control stick to a neutral position, but the linear response of a typical scissor spring arrangement can reduce a users sense of control by allowing slack between deflections. This innovations design is driven by a spring mechanism whereby an expansion spring is looped around the channeled circumference of two rounded pivoting blades whose setup can be tuned to allow varying spring tension. This allows the user enhanced control stick sensitivity while operating drive systems, industrial automation, measuring technology, mobile machinery, and gaming systems. This technology is currently implemented on NASAs Orion Spacecraft training simulators using three-axis hand controllers.

The Technology
The traditional scissor spring design for hand controllers has been improved upon with a circumferential spring controller mechanism that facilitates easy customization, enhanced durability, and optimum controller feedback. These advantages are partially facilitated by locating the spring to the outside of the mechanism which allows for easier spring replacement to adjust the deflection force or for maintenance. The new mechanism is comprised of two rounded blades, or cams, that pivot forward and back under operation and meet to form a circle. An expansion spring is looped around the blade perimeter and resides in a channel, providing the restoring force that returns the control stick to a neutral position. Due to the use of a longer circumferential spring, the proportion of spring expansion is smaller for a given distance of deflection, so the forces associated with the deflection remain on a more linear portion of the force deflection curve. The Circumferential Scissor Spring for Controllers is at technology readiness level (TRL) 8 (actual system completed and flight qualified through test and demonstration) and is available for patent licensing. Please note that NASA does not manufacture products itself for commercial sale.
Shown: Three-quarter view of three-axis analog hand controller (left) engineered with Circumferential Scissor Springs, and side view of controller (right) with control stick being pushed inward, initiating circumferential spring return-tension.
Benefits
  • Responsive: Displacement of spring from neutral resides within linear portion of deflection curve, minimizing "dead zone" or slack between deflections.
  • Customizable: Spring resides on outside of mechanism, facilitating easier replacement for force adjustment or maintenance.
  • Robust: V-groove track profile (where spring resides) and proportionally small spring displacement reduces friction and increases durability.
  • Scalable: Easy to scale deflection curve by using different combinations of spring types, component materials, and sizes.

Applications
  • Aerospace: spacecraft, aircraft, remotely operated reconnaissance vehicles
  • Industrial and military: mobile machinery, drive system and remote valve operation, hazardous environment vehicles, weaponry
  • Entertainment: gaming controllers, drones
  • Telesurgery: precision controllers for robotic surgery systems
Technology Details

robotics automation and control
MSC-TOPS-113
MSC-26667-1
Similar Results
Tri-Rotor Steering Wheel Yields Programmable Vehicular Control
Since NASAs Apollo program of the late 1960s and 1970s, many previous LTV hand controllers (e.g., joysticks, T-handles) were developed and utilized albeit with shortcomings. Some of these options yielded the desired level of control but were too physically taxing to use for long periods of time in a spacesuit environment. Others simply did not offer the necessary fine motor control. Thus, there has been a long-standing need for controllers that improve upon both of these limitations. The Tri-Rotor is a novel hand controller designed to reduce operator fatigue, add control capabilities (beyond those of a joystick), and increase the fidelity of control inputs. The design consists of two slotted handles that rotate independently within opposite sides of the Tri-Rotor main-body. Each handle is programmable and can rotate 45 degrees. In this iteration, the right handle rotates counterclockwise and acts as an accelerator and brake. The left handle rotates both clockwise and counterclockwise and controls crabbing whereby the vehicles rear wheels turn in the same direction as the front wheels facilitating diagonal or possibly lateral movement. The main-body of the Tri-Rotor rotates upon a central pivot like an automotive steering wheel and can provide directional input for Ackermann-like steering. The handles on the Tri-Rotor are designed with spacesuit kinematics in mind and are operated using the pronated and supinated motions of the astronauts hands allowed by the wrist bearings between the glove and the forearm of the spacesuit. The devices central steering pivot is also operated by the hands and is leveraged by the up and down motions of the arms allowed by the constant volume joints in the spacesuits shoulders. This hand controller design staves off operator fatigue and sheds the need for separate fine-dexterity controls without sacrificing precision. The Tri-Rotor Hand Controller has a technology readiness level (TRL) 5 (component and/or breadboard validation in relevant environment) and is now available for patent licensing. Please note that NASA does not manufacture products itself for commercial sale.
Pilots in cockpit of a plane.
Foot Pedal Controller
The Foot Pedal Controller enables an operator of a spacecraft, aircraft, or watercraft, or a simulation of one in a video game, to control all translational and rotational movement using two foot pedals. This novel technology allows control across all six degrees of freedom, unlike any technology on the market. The components of the technology are a support structure, a left foot pedal, a right foot pedal, and supporting electronics. The Foot Pedal Controller is intuitive, easy to learn, and has ergonomic features that accommodate and stabilize the operator's feet. A working prototype is available to demonstrate key technology features to potential licensees. The Foot Pedal Controller technology could be used in designs for the flight deck of the future, video game controls, drone operations and flight simulators. This technology can be useful in any application where it is preferred or desirable to use the feet to control motion rather than using the hands. A potential market could be foot control of equipment by people with arm or hand disabilities. A unique aspect of the innovation is the consideration of natural foot mechanics in the design and placement of the sensors and actuators to reduce operator fatigue. The axes of rotation of the Controller align with the joints of the foot so the foot moves naturally to control the movement of the craft. NASA seeks collaborations with companies interested in licensing and partnering to further develop and commercialize the technology.
front
Gimbal for Steering Propelled CubeSats
The small thruster mount, roughly the size of a doughnut, controls the rotation and tilt of a directional system to a high degree of accuracy (0.02 degrees). NASA developed the rotary tilting gimbal (RTG) for thruster directional control of CubeSats. This RTG is designed to provide precision control in both the tilting and rotary degree of freedom by using accurate positioning, encoded piezoelectric motors, and a close tolerance machined structure. The RTG functions via rotary motion of the integrated assembly by a grounded piezoelectric support motor, and tilts via a rotary motor that rides on the primary structure. This alleviates the need for more traditional, directional control hardware, including magnetorquers and magnetometers. The subject technology has a resulting rotational degree of freedom of 360 degrees and a tilting degree of freedom of +/- 12 degrees. The rotary motor is connected to the tilt plate by a two-piece crank assembly. The gimbal weight, including the motors, is about 420 grams; without motors, it is about 100 grams. The operating temperature range is 0-50C. Sinusoidal testing was performed before and after the random vibration tests to determine if any structural changes occurred as a result of the tests. The gimbal met the qualification requirements and did not present any significant structural changes from flight-level testing.
.
Robotic gripper for satellite capture and servicing
The Gripper is located at the end of a robotic system consisting of a robotic arm equipped with a Tool Drive or End Effector comprising the input actuator to the Gripper as well as the structural, power and data link between the Gripper and the robotic arm. In a notional concept of operations, a Servicer would approach the Client in an autonomous rendezvous and capture (AR&C) maneuver. When the Servicers sensor suite confirms that the distance, orientation, and relative translational and angular rates with respect to the Client are within an acceptable range, the Servicer enables the grasping sequence, where the robotic arm, equipped with Gripper, extend forward to the Client. When the Gripper/ Servicer sensors indicate that the Client marman ring is sufficiently within the capture range of the Gripper, a trigger signal is sent to the robot control system that commands the End Effector to drive the mechanism of the Gripper and affect closure around the marman ring. The Gripper consists of a pair of jaws which are driven by an internal transmission. The transmission receives input torque from the End Effector and converts the torque to appropriate motion of the jaws.
Lunar Surface Manipulation System
Lunar Surface Manipulation System
NASA Langley developed the LSMS because of the need for a versatile system capable of performing multiple functions on the lunar surface, such as unloading components from a lander, transporting components to an operational site and installing them, and supporting service and replacement during component life. Current devices used for in-space operations are designed to work on orbit (zero g) only and thus do not have sufficient strength to operate on planetary surfaces. Traditional cranes are specialized to the task of lifting and are not capable of manipulator-type positioning operations. The innovations incorporated into the LSMS allow it to lower payloads to the ground over a significant portion of the workspace without use of a hoist, functioning like a robot manipulator, thus providing a rigid connection and very precise control of the payload. The LSMS uses a truss architecture with pure compression and tension members to achieve a lightweight design. The innovation of using multiple spreaders (like spokes in a wheel) allows the LSMS to maintain its high structural efficiency throughout its full range of motion. Rod portions of the tension members automatically lift off and re-engage the spreaders as the joint articulates, allowing a large range of motion while maintaining mechanical advantage. In addition, the LSMS uses a quick-change device at the tip end that enables automated acquisition of end effectors or special purpose tools to increase its versatility.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo