Battery Management System

power generation and storage
Battery Management System (MSC-TOPS-40)
Simple, reliable, and safe battery management for high-voltage battery systems
Overview
NASA seeks interested parties to license the Battery Management System (BMS) developed by innovators at Johnson Space Center. NASA's BMS features the ability to monitor and balance the charge of individual battery cells that are in series and provide fault detection of individual cells in parallel within a battery pack of hundreds of cells. The circuit uses fewer connections (pins) than competing technologies, which reduces complexity and improves reliability. It offers a safe and potentially low-cost management system for high-voltage battery systems, including lithium-ion (Li-ion) battery systems that are used in electric vehicles and other next-generation renewable energy applications. This NASA Technology is available for your company to license and develop into a commercial product. NASA does not manufacture products for commercial sale.

The Technology
The technology is comprised of a simple and reliable circuit that detects a single bad cell within a battery pack of hundreds of cells and it can monitor and balance the charge of individual cells in series. NASA's BMS is cost effective and can enhance safety and extend the life of critical battery systems, including high-voltage Li-ion batteries that are used in electric vehicles and other next-generation renewable energy applications. The BMS uses saturating transformers in a matrix arrangement to monitor cell voltage and balance the charge of individual battery cells that are in series within a battery string. The system includes a monitoring array and a voltage sensing and balancing system that integrates simply and efficiently with the battery cell array, limiting the number of pins and the complexity of circuitry in the battery. The arrangement has inherent galvanic isolation, low cell leakage currents, and allows a single bad or imbalanced cell in a series of several hundred to be identified. Cell balancing in multi-cell battery strings compensates for weaker cells by equalizing the charge on all the cells in the chain, thus extending battery life. Voltage sensing helps avoid damage from over-voltage that can occur during charging and from under-voltage that can occur through excessive discharging.
The NASA developed technology could be applicable in electric vehicle battery charging station technologies.
Benefits
  • Safety: decreases the occurrence of thermal runaway and catastrophic failures
  • Reliability: uses a low pin count; reduced complexity and increased reliability
  • Dual-purpose - detects the individual bad cells within series and parallel cells
  • Extended battery life: manages battery cells within a string increasing battery life
  • Decreased battery damage: prevents damage from too much or too little voltage
  • Limited charge current - balances cells by adding charge to individual cells after main charge is complete
  • Low cost - provides a less expensive alternative to existing, commercially available solutions

Applications
  • Electric vehicles (EVs), plug-in hybrid (PHEV), and hybrid electric vehicles (HEVs)
  • Telecommunications backup systems
  • Space mission critical battery backup systems
  • Uninterruptible power systems
  • Electric utility storage for renewable energy
  • High-voltage critical battery systems
Technology Details

power generation and storage
MSC-TOPS-40
MSC-24466-1 MSC-24509-1
8183870 8570047
Similar Results
Battery Charge Equalizer System
Battery Charge Equalizer System
The innovation consists of a transformer array connected to a battery array through rectification and filtering circuits. The transformer array is connected to a drive circuit and a timing and control circuit, which enables individual battery cells or cell banks to be charged. The timing and control circuit connects to a charge controller that uses battery instrumentation to determine which battery bank to charge. The system is ultra lightweight because it uses much fewer than one transformer per battery cell. For instance, 40 battery cells can be balanced with an array of just five transformers. The innovation can charge an individual cell bank at the same time while the main battery charger is charging the high-voltage battery system. Conventional equalization techniques require complex and costly electrical circuitry to achieve cell monitoring and balancing. Further, such techniques waste the energy from the most charged cells through a dummy resistive load (regulator), which is inefficient and generates excess heat. In contrast, this system equalizes battery strings by selectively charging cells that need it. The technology maintains battery state-of-charge to improve battery life and performance. In addition, the technology provides a fail-safe operation and a novel built-in electrical isolation for the main charge circuit, further improving the safety of high-voltage Li-ion batteries.
Li-ion Cell Calorimeter
Li-ion batteries are an integral part of energy storage systems used in NASA's Exploration program, as well as many modern terrestrial industries. Innovators at the NASA Johnson Space Center wanted a better way to measure total and fractional heat response of specific types of Li-ion cells when driven into a thermal runaway condition. They developed a calorimeter with at least two chambers, one for the battery cell under test and at least one other chamber for receiving the thermal runaway ejecta debris. Both are designed to be structurally strong and thermally insulated. When the test cell is intentionally driven into thermal runaway, ejecta explodes into the ejecta chamber and is decelerated and collected. Thermal sensors are strategically placed throughout the chambers to collect thermal data during the test. Customized software analyzes the thermal data and determines key calorimeter parameters with a high degree of accuracy.
Car Charging
Internal Short Circuit Testing Device to Improve Battery Designs
Astronauts' lives depend on the safe performance and reliability of lithium-ion (Li-ion) batteries when they are working and living on the International Space Station. These batteries are used to power everything such as communications systems, laptop computers, and breathing devices. Their reliance on safe use of Li-ion batteries led to the research and development of a new device that can more precisely trigger internal short circuits, predict reactions, and establish safeguards through the design of the battery cells and packs. Commercial applications for this device exist as well, as millions of cell phones, laptops, and electronic drive vehicles use Li-ion batteries every day. In helping manufacturers understand why and how Li-ion batteries overheat, this technology improves testing and quality control processes. The uniqueness of this device can be attributed to its simplicity. In a particular embodiment, it is comprised of a small copper and aluminum disc, a copper puck, polyethylene or polypropylene separator, and a layer of wax as thin as the diameter of one human hair. After implantation of the device in a cell, an internal short circuit is induced by exposing the cell to higher temperatures and melting the wax, which is then wicked away by the separator, cathode, and anode, leaving the remaining metal components to come into contact and induce an internal short. Sensors record the cell's reactions. Testing the battery response to the induced internal short provides a 100% reliable testing method to safely test battery containment designs for thermal runaway. This jointly developed and patented technology is available for your company to license and develop into a commercial product. NASA does not manufacture products for commercial sale.
satellite
System And Method for Managing Autonomous Entities through Apoptosis
In this method an autonomic entity manages a system through the generation of one or more stay alive signals by a hierarchical evolvable synthetic neural system. The generated signal is based on the current functioning status and operating state of the system and dictates whether the system will stay alive, initiate self-destruction, or initiate sleep mode. This method provides a solution to the long standing need for a synthetic autonomous entity capable of adapting itself to changing external environments and ceasing its own operation upon the occurrence of a predetermined condition deemed harmful.
Triggering Li-ion Battery Cells with Laser Radiation
This technology is based upon a 120-watt IR laser is coupled to a fiber optic cable that is routed from the output of the laser into a series of focusing optics which directs energy onto a battery cell mounted to a test stand. When activated, heat from the laser penetrates the metal housing, heating the internals of the cell. At a specific temperature, the separator in the first few layers of the cell melts allowing the anode and cathode to make contact and initiates an internal short circuit. The internal short circuit then propagates throughout the battery eventually causing thermal runaway. The lower the wavelength of the laser used to produce the thermal runaway, the more heat-energy will be absorbed into the cell producing a faster result. The fiber optic cable can be terminated into a series of optics to focus the laser at a specific target, or the fiber optic cable can be stripped bare and placed next to the target to heat an isolated location. This method can also be used on a wide variety of cells, including Li-ion pouch cells, Li-ion cylindrical cells and Li-ion Large format cells. The innovation Triggering Li-ion Cells with Laser Radiation is at TRL 6 (which means a system/subsystem prototype has been demonstrated in a relevant environment) and the related patent application is now available to license and develop into a commercial product. Please note that NASA does not manufacture products itself for commercial sale.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo