Digital to Analog Transformation and Reconstruction of ECG Data

health medicine and biotechnology
Digital to Analog Transformation and Reconstruction of ECG Data (MSC-TOPS-67)
New simple method and device that allows rapid automated second interpretation of 12-lead ECG data
Overview
The innovators at the NASA Johnson Space Center have developed a new method and device for specialized digital to analog conversion (DAC) and reconstruction of multichannel electrocardiograms (ECGs), including 12-lead ECGs. Current devices do not have the functionality that allow for the transmission of stored digital ECG data collected from one manufacturer's ECG machine to another for an automated second opinion. With this technology the physician has the opportunity to compare results by transferring the ECG data to another ECG machine regardless of location when a patients results are difficult-to-interpret for a second opinion. The technology also allows for the use of less expensive 12-lead ECG front ends or analog to digital conversion (ADC) hardware which is advantageous when in remote locations or with patients who are mobile during research studies. The digital to analog transformation and reconstruction of ECG data technology is available for licensing.

The Technology
NASA innovators developed a method and apparatus for digital to analog conversion and reconstruction of multichannel electrocardiograms. The technology uses an algebraically optimized hardware configuration and software format that re-creates the presence of a connected patient when the patient is no longer actually present. This simplified method makes it easier and possible to transmit stored digital ECG data collected on one machine into another for an automated second opinion. Along with this functionality, the technology would make it possible to share the data collected for difficult-to-interpret 12-lead ECGs and rhythms with others in different locations. The device allows for very inexpensive ECG hardware front ends to be utilized for data collection since the digital data obtained will always be accurately convertible back to analog for fuller analysis at any central ECG receiving station. This capability would be useful for several situations, such as patients being monitored for heart conditions at home, student athletes participating in ECG screening programs, and individuals being screened in underdeveloped countries or remote areas. The NASA developed technology would be useful in collecting ECG data in environments such as military mobile units, oil platforms, mountaineering, and expeditions. This NASA Technology is available for your company to license and develop into a commercial product. NASA does not manufacture products for commercial sale.
Medical care world wide The NASA-developed technology automates the data collection and transfer of ECG data for use in many setting and applications.
Benefits
  • Simple - Uses an algebraically optimized hardware configuration and software format
  • Flexible - Inexpensive ECG front end hardware can be used
  • Automation - ECG data collection and transfer is automated
  • Compatible - Device can transfer ECG data regardless of ECG machine

Applications
  • Oil Platforms
  • Expeditions (Mountaineering, Polar, or Other)
  • ECG Equipment Testing and Research
  • Patient Research Programs
  • Extended Care Hospitals
  • Home Care Services
Technology Details

health medicine and biotechnology
MSC-TOPS-67
MSC-25265-1
10085662
Kothadia, R., Kulecz, W., Kofman, I., Black, A., Grier, J., Schlegel, T. "New System for Digital to Analog Transformation and Reconstruction of 12-Lead ECGs" PLOS One Research Journals (2014). DOI: 10.137/journal.pone.0061076
Similar Results
Front Image Internet Security
Method and Device for Biometric Verification and Identification
The advantage of using cardiac biometrics over existing methods is that heart signatures are more difficult to forge compared to other biometric devices. Iris scanners can be fooled by contact lenses and sunglasses, and a segment of the population does not have readable fingerprints due to age or working conditions. Previous electrocardiographic signals employed a single template and compared that template with new test templates by means of cross-correlation or linear-discriminant analysis.The benefit of this technology over competing cardiac biometric methods is that it is more reliable with a significant reduction in error rates. The benefit of this technology is that it creates a probabilistic model of the electrocardiographic features of a person instead of a single signal template of the average heartbeat. The probabilistic model described as Gaussian mixture model allows various modes of the feature distribution, in contrast to a template model that only characterizes a mean waveform. Another advantage is that the model uses both physiological and anatomical characterization of the heart, unlike other methods that mainly use only physiological characterization of the heart. By combining features from different leads, the heart of the person is better characterized in terms of anatomical orientation because each lead represents a different projection of the electrical vector of the heart. Thus, employing multiple electrocardiographic leads provides a better performance in subject verification or identification.
Infrasonic Stethoscope
Full Spectrum Infrasonic Stethoscope for Screening Heart, Carotid Artery, and Lung Related Diseases
Microphones and stethoscopes are regularly used by physicians to detect sounds when monitoring physiological conditions. These monitors are coupled directly to a person's body and measure in certain bandwidths either by listening or by recording the signals. The physiological processes such as respiration and cardiac activity are reflected in a different frequency bandwidth from 0.01 Hz to 500 Hz. This technology can monitor physiological conditions in the entire bandwidth range. Signals can also be wirelessly transmitted, using Bluetooth, to other recording devices at any other location.
electrical field
Electric Field Imaging System
The EFI imaging platform consists of a sensor array, processing equipment, and an output device. By registering voltage differences at multiple points within the sensor array, the EFI system can calculate the electrical potential at points removed from the sensor. Using techniques similar to computed tomography, the electrical potential data can be assembled into a three-dimension map of the magnitude and direction of electric fields. Since objects interact with electric fields differently based on their shape and dielectric properties, this electric field data can then be used to understand shape, internal structure, and dielectric properties (e.g., impedance, resistance) of objects in three dimensions. The EFI sensor can be used on its own to see electric fields or image electric fieldemitting objects near the sensor (e.g., to evaluate leakage from poorly shielded wires or casings). For evaluation of objects that do not produce an electric field, NASA has developed generator that emits a low-current, human-safe electrostatic field for snapshot evaluation of objects. Additionally, an alternative EFI system optimized to evaluate electric fields at significant distances (greater than 1 mile) is being developed for weather-related applications.
Sensor
Portable Medical Diagnosis Instrument
The technology utilizes four cutting-edge sensor technologies to enable minimally- or non-invasive analysis of various biological samples, including saliva, breath, and blood. The combination of technologies and sample pathways have unique advantages that collectively provides a powerful analytical capability. The four key technology components include the following: (1) the carbon nanotube (CNT) array designed for the detection of volatile molecules in exhaled breath; (2) a breath condenser surface to isolate nonvolatile breath compounds in exhaled breath; (3) the miniaturized differential mobility spectrometer (DMS) -like device for the detection of volatile and non-volatile molecules in condensed breath and saliva; and (4) the miniaturized circular disk (CD)-based centrifugal microfluidics device that can detect analytes in any liquid sample as well as perform blood cell counts. As an integrated system, the device has two ports for sample entry a mouthpiece for sampling of breath and a port for CD insertion. The breath analysis pathway consists of a CNT array followed by a condenser surface separating liquid and gas phase breath. The exhaled breath condensate is then analyzed via a DMS-like device and the separated gas breath can be analyzed by both CNT sensor array again and by DMS detectors.
MQ-1 Predator
Analog Signal Correlating
Each of two analog signals (channels A and B) is converted to a digital bit stream by phase correcting it and comparing it to an average of itself at a sampling clock rate f. The hard-limited conversions of A and B are bitwise compared to measure the level of similarity between the two by the OBDC. This similarity measurement X is equal to the maximum possible Hamming distance (N bits in disagreement) minus the measured number of bits in disagreement. The OBDC functions are embedded into a field programmable gate array (FPGA). The OBDC is made up of two shift registers containing the current sample values (of length N) from each of the two input channels (A and B). During each sample clock, a new sample from each A and B input is clocked into the input linear shift register for each respective channel; this input shifts the current values in the linear shift register. Once the inputs have been clocked in, the correlation routine can start. Once the correlation value has been calculated, this result is forwarded to compare with the max correlation value register. If the X value is greater than the current max correlation value, then the max correlation value becomes X, and the shift counter register is latched and put into the best correlation index register, providing the index of the current best correlation. This index is the number of sample clock periods difference between the two input signals and thus, for sample clock rate f, indicates the delay between the signals A and B. This is an early-stage technology requiring additional development. Glenn welcomes co-development opportunities.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo