Robotics, Automation and Control

PATENT PORTFOLIO
Robotics, Automation and Control
Robotics, Automation and Control
Mechanical devices or machines that resemble a human or are designed to replace human beings semi- or fully-autonomously by performing a variety of complex or routine mechanical tasks either on command or by being programmed in advance.
Robonaut 2: Logistics and Distribution
Robonaut 2: Logistics and Distribution
R2 was designed to work side-by-side with people and to be sensitive to its surroundings. The robot's advanced vision systems and recognition processing can quickly recognize a person in its path and take the appropriate action. If the robot comes into contact with a person or piece of equipment, it gives. There is no need to design specialized equipment for R2 because the robot has the ability to operate equipment and machines designed for humans, like hand-held power tools. R2 has the capability to improve the speed and accuracy of operations while maintaining sensitivity to its surroundings, making the robot prime for the logistics and distribution environment. R2 was designed to handle unexpected objects coming into its path since it has to function in space where not everything is locked down. The robot has the ability to move in unconventional ways as compared to existing robots. Robonaut 1, an earlier version of R2, was integrated with a two-wheeled Segway personal transporter, giving it a range of motion. R2 has the capability of being integrated onto a two-wheeled base or a more rugged four-wheel base. An adaptable interface would enable R2 to integrate with other surface mobility systems. This NASA Technology is available for your company to license and develop into a commercial product. NASA does not manufacture products for commercial sale.
Algorithms for stabilizing intelligent networks
Algorithms for stabilizing intelligent networks
Some of the current challenges faced by research in artificial intelligence and autonomous control systems include providing self control, resilience, adaptability, and stability for intelligent systems, especially over a long period of time, in changing environments. The Evolvable Neural Software System (ENSS), Formulation for Emotion Embedding in Logic Systems (FEELS), Stability Algorithm for Neural Entities (SANE), and the Logic Expansion for Autonomously Reconfigurable Neural Systems (LEARNS) are foundations for tackling some of these challenges, by providing the basic algorithms evolvable systems could use to manage its own behavior. These algorithms would allow networks to self regulate, noticing unusual behavior and the circumstances that may have caused that behavior, and then correcting to behave more predictably when similar circumstances are encountered. The process is similar to how psychology in organisms evolved iteratively, eventually finding and keeping better responses to given stimuli.
.
Robotic gripper for satellite capture and servicing
The Gripper is located at the end of a robotic system consisting of a robotic arm equipped with a Tool Drive or End Effector comprising the input actuator to the Gripper as well as the structural, power and data link between the Gripper and the robotic arm. In a notional concept of operations, a Servicer would approach the Client in an autonomous rendezvous and capture (AR&C) maneuver. When the Servicers sensor suite confirms that the distance, orientation, and relative translational and angular rates with respect to the Client are within an acceptable range, the Servicer enables the grasping sequence, where the robotic arm, equipped with Gripper, extend forward to the Client. When the Gripper/ Servicer sensors indicate that the Client marman ring is sufficiently within the capture range of the Gripper, a trigger signal is sent to the robot control system that commands the End Effector to drive the mechanism of the Gripper and affect closure around the marman ring. The Gripper consists of a pair of jaws which are driven by an internal transmission. The transmission receives input torque from the End Effector and converts the torque to appropriate motion of the jaws.
Image of the SpaceSuit Roboglove Prototype
New Capabilities for Grasp-Assisting Gloves
NASA is currently developing the next generation of space suits for future missions, including the optimization of space suit gloves, which, when coupled to a pressurized suit, tend to limit the range of motion of an astronaut's hand to as little as 20%. Many of NASA's future missions will be in challenging environments where hand dexterity of the astronaut will be critical for the success of NASA missions. NASA innovators have developed several features to reduce hand exertion when an astronaut is wearing the space suit gloves. Some of the major components include improved actuators, sensors for assisting with the positioning in the hand during grasping, and the new, low-maintenance Triple Brummel Anchor. These components were developed to create interactive robotic gloves that increase hand strength and dexterity. This new NASA space suit glove can be applied to improve the state of the art of commercial grasp-assist robotic gloves. New Capabilities for Grasp-Assisting Gloves is at a TRL 6 (system/subsystem model or prototype demonstration in a relevant environment (ground or space), and it is now available for licensing and integration into a commercial product. Please note that NASA does not manufacture products itself for commercial sale.
front
Robotic Assembly of Photovoltaic Arrays
NASA researchers have developed the PAPA technology to increase the efficiency of the thin-film solar array assembly process, significantly decreasing assembly time and labor costs associated with manufacturing large scale solar arrays. Traditional solar cell assembly is a labor intensive, multi-step, time-consuming process. This manual assembly will not be possible in a space environment. To enable solar array assembly in space, PAPA leverages robotic automation to distill the traditional assembly method into four fully automated steps: applying adhesive to block substrate, placing the solar cells using a vacuum tool attached to a universal robotic arm, printing the interconnects and buses to connect the cells, and applying a protective cover. The PAPA technology is compatible with a variety of thin-film solar cells, including 3D printed cells (essential for future in-space manufacturing of arrays) and terrestrial manufacturing methods. As solar cell technologies mature, PAPA will be able to incorporate advancements into the paneling process. NASA researchers have begun to employ PAPA solar array fabrication and estimate savings of $300-$400/watt. For extraterrestrial assembly of solar panels the size of a football field or larger, PAPA could result in savings of approximately $500 million; a substantial cost savings driven by standardization and efficiency in the solar array assembly process. By demonstrating increases in assembly efficiency, time and cost savings, and passing multiple environmental exposure tests, the PAPA lab protype has completed the final phases of technology development and is ready for scale-up and commercialization.
RASSOR 2.0
Regolith Advanced Surface Systems Operations Robot (RASSOR) Excavator
Regolith excavation is desired in future space missions for the purpose of In Situ Resource Utilization (ISRU) to make local commodities, such as propellants and breathing air, and to pursue construction operations. The excavation of regolith on another planetary body surface, such as the Moon, Mars, an asteroid, or a comet is extremely difficult because of the high bulk density of regolith at lower depths. Additionally, because of the low gravity in these space surface environments, the mass of the excavator vehicle does not provide enough reaction force to enable the excavation blade to penetrate the regolith if traditional terrestrial methods are used. RASSOR uses counterrotating bucket drums on opposing arms to provide near-zero horizontal and minimal vertical net reaction force so that excavation is not reliant on the traction or weight of the mobility system to provide a reaction force to counteract the excavation force in low-gravity environments. The excavator can traverse steep slopes and rough terrain, and its symmetrical design enables it to operate in reverse so that it can recover from overturning by continuing to dig in the new orientation. The system is capable of standing up in a vertical position to dump into a receiving hopper without using a ramp. This eliminates the need for an onboard dump bin, thus reducing complexity and weight. During loading, the bucket drums excavate soil/regolith by scoops mounted on the drums exteriors that sequentially take multiple cuts of soil/regolith while rotating at approximately 20 revolutions per minute. During hauling, the bucket drums are raised by rotating the arms to provide clearance above the surface being excavated. The mobility platform can then travel while the soil/regolith remains in the raised bucket drums. When the excavator reaches the dump location, the bucket drums are commanded to reverse their direction of rotation, which causes soil/regolith to be expelled out of each successive scoop. RASSOR has wireless control, telemetry, and onboard transmitting cameras, allowing for teleoperation with situational awareness. The unit can be programmed to operate autonomously for selected tasks.
Wind Turbines
Residual Mode Filters
Many control problems can benefit from the adaptive control algorithm described. This algorithm is well-suited to nonlinear applications that have unknown modeling parameters and poorly known operating conditions. Disturbance accommodation is a critical component of many systems. By using feedback control with disturbance accommodation, system performance and reliability can be increased considerably. Often the form of the disturbance is known, but the amplitude is unknown. For instance, a motor operating on a structure used for accurate pointing would cause a sinusoidal disturbance of a known frequency content. The algorithm described is able to accurately cancel these disturbances, without needing knowledge of their amplitude. In markets needing controllers, the efficiency, uptime, and lifespan of equipment can be dramatically increased due to the robustness of this technologys design.
NanoSat
Cost Optimized Test of Spacecraft Avionics and Technologies(COTSAT) Modular Spacecraft Software Architecture
The goal of COTSAT as a technology demonstration unit is to demonstrate the ability for drastic cost reduction in spacecraft design and to develop methods and technologies for maximizing reuse of developed spacecraft hardware, software and related technology on future missions. This approach will enable for rapid response capabilities given advances in rapid prototyping. COTSAT consists of the following sub-systems: - An artificial environment container, which comprises much of the satellite structure, is used to contain the single atmosphere environment. The artificial atmosphere container is used to replicate an Earth-like atmosphere, allowing the use of Commercial-Off-The Shelf (COTS) hardware and electronics which were not necessarily originally designed to operate in the vacuum environment of space. - A key design element in the bus structure of COTSAT is the modular platform upon which the bus is assembled. This structure allows for a logic-flow integration of components leading to ideal placement of electronics. - The Electrical Power System (EPS) architecture utilizes a distributed power and self-monitor approach. - The Command and Data Handling (C&DH) subsystem provides a number of critical capabilities, including spacecraft health and status monitoring, communication, payload science data management and subsystem management. - The COTSAT communications architecture incorporates four independent communications paths. - The software architecture consists of modular, independent software daemons for each subsystem or capability such as the star tracker, the Inertial Measurement Unit (IMU), the reaction wheels, the main executive, the communications system, the control system and the payload. - The COTSAT has a three-axis Attitude Determination And Control System (ADACS), using four reaction wheels and three magnetic torque coils. - To aid in technology development and testing, the COTSAT hardware and technology performance has been verified by a number of prototype test-beds. There have been three major test platforms during the development cycle.
Robo-Glove
Robo-Glove
Originally developed by NASA and GM, the Robo-Glove technology was a spinoff of the Robonaut 2 (R2), the first humanoid robot in space. This wearable device allows the user to tightly grip tools and other items for longer periods of time without experiencing muscle discomfort or strain. An astronaut working in a pressurized suit outside the space station or an assembly operator in a factory might need to use 15 to 20 lbs of force to hold a tool during an operation. Use of the Robo-Glove, however, would potentially reduce the applied force to only 5 to 10 lbs. The Robo-Glove is a self-contained unit, essentially a robot on your hand, with actuators embedded into the glove that provide grasping support to human fingers. The pressure sensors, similar to the sensors that give R2 its sense of touch, are incorporated into the fingertips of the glove to detect when the user is grasping an object. When the user grasps the object, the synthetic tendons automatically retract, pulling the fingers into a gripping position and holding them there until the sensor is released by releasing the object. The current prototype weighs around two pounds, including control electronics and a small display for programming and diagnostics. A lithium-ion battery, such as one for power tools, is used to power the system and is worn separately on the belt.
View more patents
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo