Search

optics
Seaweed Farms in South Korea acquired by The Operational Land Imager (OLI) on Landsat 8
Non-Scanning 3D Imager
NASA Goddard Space Flight Center's has developed a non-scanning, 3D imaging laser system that uses a simple lens system to simultaneously generate a one-dimensional or two-dimensional array of optical (light) spots to illuminate an object, surface or image to generate a topographic profile. The system includes a microlens array configured in combination with a spherical lens to generate a uniform array for a two dimensional detector, an optical receiver, and a pulsed laser as the transmitter light source. The pulsed laser travels to and from the light source and the object. A fraction of the light is imaged using the optical detector, and a threshold detector is used to determine the time of day when the pulse arrived at the detector (using picosecond to nanosecond precision). Distance information can be determined for each pixel in the array, which can then be displayed to form a three-dimensional image. Real-time three-dimensional images are produced with the system at television frame rates (30 frames per second) or higher. Alternate embodiments of this innovation include the use of a light emitting diode in place of a pulsed laser, and/or a macrolens array in place of a microlens.
aerospace
front image
Transformable Hypersonic Aerodynamic Decelerator
The invention allows the deployment of a large aerodynamic decelerator relative to the size of its launch vehicle, which is controllable and can be transformed into a landing system. A structure composed of a radial assembly of ribs and struts in a four bar linkage arrangement fits inside a launch vehicle shroud, expands into a deployed size, and permits rotation about a pivot point along the vehicle axis. The mechanism that deploys the decelerator surface, doubles as the actuation/control mechanism, and triples as the payload surface leveling system. The design permits the use of conformable thermal protection systems at the central part and a flexible TPS, 3-D woven carbon fabric, as skin in the majority of the regions of the aeroshell entry system. The fabric handles both the heat and mechanical load generated during entry. This system is very mass competitive with other lightweight systems such as inflatable and rigid decelerators and is believed to be more reliable and testable at sub-scale. Once the payload reaches its destination, the decelerator structure leverages atmospheric drag to slow the craft from hypersonic travel speeds to an appropriate landing velocity. The decelerator can be actuated during descent to generate lift and steer the payload to its intended destination. Retro propulsion engines provide the final deceleration just before landing, and the decelerator structure is inverted to act as a landing platform and help minimize the impact of landing load.
electrical and electronics
SpaceCube 1.0b
SpaceCube
Next generation instruments are capable of producing data at rates of 108 to 1011 bits per second, and both their instrument designs and mission operations concepts are severely constrained by data rate/volume. SpaceCube is an enabling technology for these next generation missions. SpaceCube has demonstrated enabling capabilities in Earth Science, Planetary, Satellite Servicing, Astrophysics and Heliophysics prototype applications such as on-board product generation, intelligent data volume reduction, autonomous docking/landing, direct broadcast products, and data driven processing with the ability to autonomously detect and react to events. SpaceCube systems are currently being developed and proposed for platforms from small CubeSats to larger scale experiments on the ISS and standalone free-flyer missions, and are an ideal fit for cost constrained next generation applications due to the tremendous flexibility (both functional and interface compatibility) provided by the SpaceCube system.
instrumentation
Offshore oil and gas platform
Robotic Inspection System for Deep Sea Structures
The Robotic Inspection System improves the inspection of deep sea structures such as offshore storage cells/tanks, pipelines, and other subsea exploration applications. Generally, oil platforms are comprised of pipelines and/or subsea storage cells. These storage cells not only provide a stable base for the platform, they provide intermediate storage and separation capability for oil. Surveying these structures to examine the contents is often required when the platforms are being decommissioned. The Robotic Inspection System provides a device and method for imaging the inside of the cells, which includes hardware and software components. The device is able to move through interconnected pipes, even making 90 degree turns with minimal power. The Robotic Inspection System is able to display 3-dimentional range data from 2-dimensional information. This inspection method and device could significantly reduce the cost of decommissioning cells. The device has the capability to map interior volume, interrogate integrity of cell fill lines, display real-time video and sonar, and with future development possibly sample sediment or oil.
electrical and electronics
Smart Car Navigation
Sampling and Control Circuit Board
For fast platform dynamics, it is necessary to sample the IMU at quick intervals in order to fulfill the Nyquist sampling theorem requirements. This can be difficult in cases where low size, weight, and power are required, since a primary processor may already be saturated running the navigation algorithm or other system functions. Glenn's novel circuit board was designed to handle the sampling process (involving frequent interrupt requests) in parallel, while delivering the resulting data to a buffered communication port for inclusion in the navigation algorithm on an as-available basis. The circuit operates using a universal serial bus (USB) or Bluetooth interface. A control command is sent to the circuit from a separate processor or computer that instructs the circuit how to sample data. Then, a one-pulse-per-second signal from a GPS receiver or other reliable time source is sent to trigger the circuit to perform automatic data collection from the IMU sensor. This is an early-stage technology requiring additional development. Glenn welcomes co-development opportunities.
mechanical and fluid systems
A NASA astronaut trains for a future mission task that will be conducted in a weightless environment, using the ARGOS system.
Full-Size Reduced Gravity Simulator For Humans, Robots, and Test Objects
The Active Response Gravity Offload System (ARGOS) provides a simulated reduced gravity environment that responds to human-imparted forces. System capabilities range from full gravity to microgravity. The system utilizes input/feedback sensors, fast-response motor controllers, and custom-developed software algorithms to provide a constant force offload that simulates reduced gravity. The ARGOS system attaches to a human subject in a gimbal and/or harness through a cable. The system then maintains a constant offload of a portion of the subjects weight through the cable to simulate reduced gravity. The system supports movements in all 3 dimensions consistent with the selected gravity level. Front/back and left/right movements are supported via a trolley on an overhead runway and bridge drive system, and up/down movements are supported via a precisely positioned cable. The system runs at a very high cycle rate, and constantly receives feedback to ensure the human subjects safety.
environment
Robonaut 2: Hazardous Environments
Robonaut 2: Hazardous Environments
Robonaut 2 (R2) has the capability of functioning autonomously or it can be controlled by direct teleoperations, which is advantageous for hazardous environments. When functioning autonomously, R2 understands what to do and how to do it based on sensory input. R2's torso holds the control system while the visor holds several cameras that are incorporated into the visual perception system. With these capabilities, R2 can reduce or eliminate the need for humans to be exposed to dangerous environments. R2 also has a very rugged four-wheel base called the Centaur 2. The Centaur 2 base can lower or raise itself to and from the ground and turn its wheels in any direction, allowing it to turn in place and drive forward or sideways. This enables the R2 to enter hazardous areas or tackle difficult terrain without endangering its human operator. Robonaut 2 as a whole, or some of its components, can be an invaluable tool for land mine detection, bomb disposal, search and rescue, waste recycling, medical quarantined area, and so much more. The suite of technologies provides an ability to manipulate tools to help with a task, or it can tackle many tasks in a row, where a standard robot may not have the dexterity or sensing capability to get the job done. R2 could pick through nuclear waste, measure toxicity levels, and survey areas too remote or dangerous for human inspection. R2 could deal with improvised explosive devices, detect and dispose of bombs or landmines, and operate equipment that can break through walls or doors.
information technology and software
Hubble's View of Comet Siding Spring; Credit: NASA, ESA, and J.-Y. Li (Planetary Science Institute)
Automata Learning in Generation of Scenario-Based Requirements in System Development
In addition, the higher the level of abstraction that developers can work from, as is afforded through the use of scenarios to describe system behavior, the less likely that a mismatch will occur between requirements and implementation and the more likely that the system can be validated. Working from a higher level of abstraction also provides that errors in the system are more easily caught, since developers can more easily see the big picture of the system. This technology is a technique for fully tractable code generation from requirements, which has an application in other areas such as generation and verification of scripts and procedures, generation and verification of policies for autonomic systems, and may have future applications in the areas of security and software safety. The approach accepts requirements expressed as a set of scenarios and converts them to a process based description. The more complete the set of scenarios, the better the quality of the process based description that is generated. The proposed technology using automata learning to generate possible additional scenarios can be useful in completing the description of the requirements.
instrumentation
Powder Handling Device for Analytical Instruments
Powder Handling Device for Analytical Instruments
This invention is a system and associated method for causing a fine-grained powder in a sample holder to undergo at least one of three motions (vibration, rotation or translation) at a selected motion frequency in order to expose a statistically relevant population of grains in random orientation to a diffraction or fluorescent source. One or more measurements of diffraction, fluorescence, spectroscopic interaction, transmission, absorption and/or reflection can be made on the sample, using x-rays or light in a selected wavelength region. In one embodiment, the invention allows the relaxation of sample preparation and handling requirements for powder X-ray Diffraction (pXRD). The sample, held between two thin plastic windows, undergoes granular convection similar to a heated liquid, causing the individual grains to move past a collimated X-ray beam in random orientation over time. The result is an X-ray diffraction pattern having the correct diffracted intensities without a requirement for specialized mechanical motions. A major improvement over conventional sample preparation and handling techniques for pXRD is the potential to characterize larger grain-size material, resulting in a significant relaxation of the constraints on sample preparation (grinding). The powder handling system as described extends the range of useful grain sizes for XRD/ X-ray fluorescence (XRF) from a few micrometers (m) to several hundred m. Inclusion of the powder handling system enables automated instruments such as CheMin, a robotic XRD/XRF instrument designed and developed by NASA, to analyze as-received or coarsely powdered samples on NASAs Mars Science Laboratory rover, or in extreme, toxic or hazardous environments on Earth.
manufacturing
Robonaut 2 is a dexterous robot able to work with tools and equipment designed for human use.
Robonaut 2: Industrial Opportunities
NASA, GM, and Oceaneering approached the development of R2 from a dual use environment for both space and terrestrial application. NASA needed an astronaut assistant able to function in space and GM was looking for a robot that could function in an industrial setting. With this in mind, R2 was made with many capabilities that offer an enormous advantage in industrial environments. For example, the robot has the ability to retool and vary its tasks. Rather than a product moving from station to station on a conveyor with dozens of specialized robots performing unique tasks, R2 can handle several assembly steps at a single station, thereby reducing manufacturing floor space requirements and the need for multiple robots for the same activities. The robot can also be used in scenarios where dangerous chemicals, biological, or even nuclear materials are part of the manufacturing process. R2 uses stereovision to locate human teammates or tools and a navigation system. The robot was also designed with special torsional springs and position feedback to control fine motor movements in the hands and arms. R2's hands and arms sense weight and pressure and stop when they come in contact with someone or something. These force sensing capabilities make R2 safe to work side-by-side with people on an assembly line, assisting them in ergonomically challenging tasks or working independently. This NASA Technology is available for your company to license and develop into a commercial product. NASA does not manufacture products for commercial sale.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo