Fluid Transfer Coupler
Mechanical and Fluid Systems
Fluid Transfer Coupler (GSC-TOPS-285)
A fluid coupler with a low overall alignment, low insertion forces, and a locking mechanism designed for use in satellite servicing
Overview
A fluid coupling is a hydrodynamic or hydrokinetic device used to transmit rotating mechanical power. It has been used in automobile transmissions as an alternative to a mechanical clutch. It also has widespread application in marine and industrial machine drives, where variable speed operation and controlled start-up without shock loading of the power transmission system is essential. A fluid coupling consists of a housing and two turbines, plus the hydraulic fluid. The housing contains the fluid and turbines. The hydraulic fluid is directed by a pump whose shape forces the flow in the direction of the output turbine. The motion of the fluid is effectively toroidal. The Fluid Transfer Coupler addresses trades between ball-in-grove type couplers and pivoting pawls, along with various types of seals.
The Technology
The Fluid Transfer Coupler has a compensatory mechanism for alignment. All alignment is achieved within the coupler and alignment features are removed from the actuator. The coupler has a launch lock, which engages features on the coupler body and requires a hard
connection to the actuator body or the bracket. The gimbal has a clamshell spherical bearing between the lock collar and the radial bearing collar. It has larger clearances than a typical bearing of this type. This joint can potentially be eliminated if a lock is implemented. The thrust bearing allows and limits free movement. Marcel expander springs keep retainers centered, keeps the coupling centered, and prevents chatter. A hard stop limits ball loads under pressure. Wavy washer keeps ball bearings under enough pressure to prevent chatter. The alignment bell has a passive coupler which engages to align. The materials and coatings can be chosen to preclude galling and particle generation.
An active poppet seal provides debris seal at the nose and pressure seal further back. A passive poppet seal is provided by the seal cover to provide double duty. Various types of seals can be used, such as O-rings, spring-energized seals, and solid seals.
Benefits
- Minimizes alignment forces
- Minimizes wear
- Minimizes particle generation
Applications
- Satellite servicing
- Hydraulic connectors
- Telerobotics
Similar Results
Flow Control Devices
Both oscillators are flow control devices based on novel geometric designs. They have no moving parts and produce spatially oscillating jets. Each was designed to address a particular limitation of current oscillators.
Gaining control authority by decoupling frequency and amplitude:
Existing oscillators are limited in that the frequency of oscillation is controlled by input pressure or mass flow rate--the frequency and amplitude (mass flow rate) are coupled, limiting control authority over the oscillators. The new oscillator design decouples the frequency from the amplitude by employing a novel design featuring a main oscillator that controls the amplitude and a small oscillator that controls the frequency of the oscillations (see Figure 1). The decoupled oscillator delivers high (or low) mass flow rates without changing the frequency and vice versa.
Gaining control authority by synchronizing the entire oscillator jet array:
Existing oscillators in an array oscillate randomly. While this is useful for mixing enhancement, synchronized flow may be more beneficial for active flow control applications. The simple design of the new Langley synchronized oscillator achieves synchronization without having electro/mechanical or any other moving parts. The new oscillator enables synchronization of an entire array by properly designing the feedback loops to have one unique feedback signal to each actuator. Once each actuator has the same feedback signal, each main jet attaches to one side of the Coanda surface at the same time, allowing synchronized oscillation, as shown in Figure 2.
Fluid Structure Coupling Technology
FSC is a passive technology that can operate in different modes to control vibration:
Harmonic absorber mode: The fluid can be leveraged to act like a classic harmonic absorber to control low-frequency vibrations. This mode leverages already existing system mass to decouple a structural resonance from a discrete frequency forcing function or to provide a highly damped dead zone for responses across a frequency range.
Shell mode: The FSC device can couple itself into the shell mode and act as an additional spring in a series, making the entire system appear dynamically softer and reducing the frequency of the shell mode. This ability to control the mode without having to make changes to the primary structure enables the primary structure to retain its load-carrying capability.
Tuned mass damper mode: A small modification to a geometric feature allows the device to act like an optimized, classic tuned mass damper.
Micro scale electro hydrodynamic (EHD) modular cartridge pump
NASA GSFCs EHD pump uses electric fields to move a dielectric fluid coolant in a thermal loop to dissipate heat generated by electrical components with a low power system. The pump has only a few key components and no moving parts, increasing the simplicity and robustness of the system. In addition, the lightweight pump consumes very little power during operation and is modular in nature. The pump design takes a modular approach to the pumping sections by means of an electrically insulating cartridge casing that houses the high voltage and ground electrodes along with spacers that act as both an insulator and flow channel for the dielectric fluid. The external electrical connections are accomplished by means of commercially available pin and jack assemblies that are configurable for a variety of application interfaces. It can be sized to work with small electric components or lab-on-a-chip devices and multiple pumps can be placed in line for pumping greater distances or used as a feeder system for smaller downstream pumps. All this is done as a one-piece construction consolidating an assembly of 21 components over previous iterations.
Variable-Aperture Reciprocating Reed (VARR) Valve
The VARR valve has been designed to provide a variable-size aperture that proportionately changes in relation to gas flow demand. When the pressure delta between two chambers is low, the effective aperture cross-sectional area is small, while at high delta pressure the effective aperture cross-sectional area is large. This variable aperture prevents overly restricted gas flow. As shown in the drawing below, gas flow through the VARR valve is not one way. Gas flow can traverse through the device in a back-and-forth reversing flow manner or be used in a single flow direction manner. The contour shapes and spacing can be set to create a linear delta pressure vs. flow rate or other pressure functions not enabled by current standard orifices. Also, the device can be tuned to operate as a flow meter over an extremely large flow range as compared to fixed-orifice meters. As a meter, the device is capable of matching or exceeding the turbine meter ratio of 150:1 without possessing the many mechanical failure modes associated with turbine bearings, blades, and friction, etc.
Floating Piston Valve
Instead of looking to improve current valve designs, a new type of valve was conceived that not only addresses recurring failures but could operate at very high pressures and flow rates, while maintaining high reliability and longevity. The valve design is applicable for pressures ranging from 15-15,000+ psi, and incorporates a floating piston design, used for controlling a flow of a pressurized working fluid.
The balanced, floating piston valve design has a wide range of potential applications in all sizes and pressure ranges. The extremely simple design and few parts makes the design inherently reliable, simple to manufacture, and easy to maintain. The valve concept works with soft or hard metal seats, and the closing force is easily adjustable so that any closing force desired can be created. The fact that no adjustment is required in the design, ensures valve performance throughout valve life and operation.
This valve has many unique features and design advantages over conventional valve concepts:
- The largest advantage is the elimination of the valve stem and any conventional actuator, reduces physical size and cost.
- It is constructed with only 5 parts.
- It eliminates the need for many seals, which reduces failure, downtime and maintenance while increasing reliability and seat life.
- The flow path is always axially and radially symmetric, eliminating almost all of the flow induced thrust loads - even during transition from closed to open.