Hypergol Refueling Tool (HRT) and Quick Disconnect (QD) System
Aerospace
Hypergol Refueling Tool (HRT) and Quick Disconnect (QD) System (GSC-TOPS-330)
A tool system to facilitate on-orbit tele-operated robotic resupplying of media, such as propellants and pressurants, to a non-cooperative satellite
Overview
A non-cooperative satellite is a satellite that was not designed with on-orbit servicing in mind. Compared to a cooperative servicing interface, non-cooperative interfaces pose unique difficulties and challenges. Refueling is important to resupply of propellant and required pressurants or other media that allow a satellite with depleted fuel stores to extend its life. A potential, and likely, end-of-life event for a satellite is the depletion of propellant. Historically, satellites whose hardware and software components are still functioning properly will be decommissioned or de-orbited because the lack of onboard propellant does not permit proper spacecraft attitude and navigational control. The HRT and QD System can service non-cooperative satellites, addressing the challenges presented by noncooperative interfaces in order to access, interface, and manipulate non-cooperative assets.
The Technology
The HRT and QD System was designed for satellite Fill and Drain Valves (FDVs), however, the architecture and approach are extensible to all space assets that could potentially be fueled/re-fueled on and off the ground, including but not limited to manned crew vehicles, planetary rovers, and space habitats. In the same vein, the solution is extensible to spacecraft propellants, pressurants, and other media beyond hypergolic fuels. It can be used in the delivery or receipt of media.
The HRT-QD is a separate end adapter onto the HRT; the HRT-QD interfaces with the client FDV. The HRT utilizes two rotary drives to actuate the HRT-QD such that the HRT-QD can affect a seal to the FDV, and open/close the FDV while maintaining this seal. The HRT also has linear drive actuated mechanisms that locks/releases the HRT-QD from the HRT. The HRT is mated to a flexible fuel hose. The fuel hose allows propellant to be transferred from the servicer propellant transfer assembly into the HRT, and further into the HRT-QD and into the client spacecraft via the FDV. This system is mated to, and actuated, by Advanced Tool Drive System 2.0.

Benefits
- Adaptable architecture
- Seal fault tolerance and leak protection
- Improved mission fault tolerance
Applications
- Satellite servicing
Similar Results

Client Berthing System (CBS)
The Client Berthing System (CBS) was originally designed for NASA’s On-orbit Servicing, Assembly, and Manufacturing 1 (OSAM-1) spacecraft, which will grapple and refuel the LandSat 7 satellite. After the OSAM-1 spacecraft has rendezvoused with LandSat 7, a robotic arm equipped with a gripper tool will autonomously grapple the satellite’s Marman ring (launch separation ring) and affix it to the CBS in the appropriate refueling position. The CBS is comprised of three posts protruding from the servicing satellite, each with integrated berthing mechanisms, distributed in a radial pattern of 120° along the client’s Marman ring diameter. Each berthing mechanism includes a rotary clamping jaw with a drawdown and radial contact portion. The clamping jaws are actuated by a motor-driven leadscrew and guided by recirculating linear ball bearings.
After the servicing spacecraft’s robotic arm has placed the client satellite Marman ring into the CBS berthing box, the clamping jaws simultaneously move radially inward towards the center of the ring. The lead-in features of the jaws exert downward pressure on the ring, driving it towards the jaw palms as the lead-in portion rises over the surface of the ring flange. Once the flange is drawn down such that it contacts the radial clamp surface of the jaws, force is exerted causing the jaws to pivot, driving the underside of the lead-in surfaces into contact with the upper flange surface. As the jaw mechanisms continue to drive, increased axial load squeezes the ring flange between the lead-in-feature and palm of the jaws, stabilizing the connection. At a predetermined load, brakes are engaged, and system motors shut off. A NASA-developed Marman ring location detection system is employed to guide the berthing process.
NASA has developed a suite of cutting-edge technologies that can help your business develop robust satellite servicing offerings. For additional information, please see the NASA Satellite Servicing Technologies Available for Licensing link provided.

Cooperative Service Valve for In-orbit Cooperative Satellite Fueling
The CSV replaces a standard spacecraft Fill and Drain Valve to facilitate cooperative servicing. The CSV offers various advantages over standard service valves: a robotic interface, three individually actuated seals, a self-contained anti-back drive system, and built-in thermal isolation. When mounted to a spacecraft as designed, the CSV transfers all operational and induced robotic loads to the mounting structure. An anti-back drive mechanism prevents the CSV seal mechanism from inadvertent actuation. Alignment marks, thermal isolation, and a mechanical coupling capable of reacting operational and robotic loads optimize the CSV for tele-robotic operations. Unique keying of the mating interface prevents mixing of media where more than one configuration of the CSV is used. Color-coding and labels are also used to prevent operator error.
The CSV has four configurations for different working fluids, all with essentially unchanged geometry and mechanics.

Kodiak 3D Lidar
NASA Goddard Space Flight Center has developed a 3D lidar system that consists of microelectromechanical systems (MEMS) beam steering, high performance reconfigurable computing, and an in-depth understanding of systems level integration. Kodiak combines a 3D MEMS scanning lidar with a long range narrow FOV telescope to produce a flexible and capable space flight ranging system. Also included is SpaceCube-level processing power to host a variety of algorithms enabling sensing and 6 degrees of freedom.

SmallSat Standardized Architecture
SmallSat Standardized Architecture is architecture that is modularized, pressurizable, thermally controlled spacecraft-designed to host ruggedized commercial off-the-shelf (COTS) instrumentation in a terrestrial-like environment on orbit. The architecture takes advantage of a pressurizable volume for both spacecraft and payload systems. The pressurizable volume provides multiple benefits, primarily in thermal design. By maintaining one atmosphere of pressure inside the SmallSat, materials that might otherwise outgas and/or fail and/or cause significant contamination issues, are no longer a concern. This also means that certain vibration-absorbing materials/designs used in COTS hardware can be used on orbit. Additionally, printed circuit boards do not have to be redesigned for thermal requirements, plus conformal coating and contamination bake-outs are no longer required.
The SmallSat architecture is designed to take advantage of the United States Air Force (USAF) Rideshare Program and the Evolved Expendable Launch Vehicle Secondary Payload Adaptor (ESPA) ring. The ESPA ring comes in two sizes: standard and Grande. The architecture has two main configurations, one designed for the ESPA Grande, and the other for the standard ESPA ring. The ESPA Grande version is a hockey-puck-shaped spacecraft bus measuring approximately 40 inches in diameter and 20 inches in height. This version takes full advantage of the ESPA Grandes 300-kilogram capability per attachment point.

Dellingr 6U CubeSat
A NASA team gave itself just one year to develop, test and integrate a CubeSat that could reliably and easily accommodate agency-class science investigations and technology demonstrations at a lower cost. The CubeSat known as Dellingr, a name derived from the god of the dawn in Norse mythology will carry three heliophysics-related payloads. It doubles the payload capability of the ubiquitous and proven three-unit, or 3U, CubeSat pioneered by the California Polytechnic Institute in 1999 primarily for the university community.
The need for such a platform, which measures about 12 inches long, nearly 8 inches wide and 4 inches high, was for more cost-effective approaches to achieve compelling Earth and space science.
Disadvantages of the 3U size include more constraints on volume and power. Furthermore, some studies suggest that previous CubeSats failed 40 percent of the time. By doubling the platform's girth, increasing its power capacity, and employing novel processes to increase its on-orbit reliability, the team believes it will have created a platform capable of carrying out more robust missions for science.
Once successfully demonstrated, the team says it will make the platform's design implemented with low-cost, commercial off-the-shelf parts available to any U.S. organization interested in using it.