Projected Background-Oriented Schlieren Imaging

instrumentation
Projected Background-Oriented Schlieren Imaging (LAR-TOPS-365)
Two-camera setup enables real-time, reference-free flow visualization
Overview
Inventors at the NASA Langley Research Center (LAR) have developed a new background-oriented schlieren (BOS) imaging technique. The new technique enables vibration-tolerant, real-time, and reference-free BOS imaging for scientific investigations or industrial flow monitoring. Typically, BOS imaging requires a physical pattern on a retroreflective surface within the flow of interest to visualize that flow through changes in the pattern due to density changes between the pattern and a camera. Here, the BOS imaging technique does not require a physical pattern within the flow, and it is instead projected through the flow onto a retroreflective surface that is then imaged by a camera. Projecting the pattern allows the pattern to be changed mid-measurement and may lessen the cost of BOS imaging for a variety of flow visualization applications.

The Technology
The Projected BOS imaging system developed at the NASA Langley Research Center provides a significant advancement over other BOS flow visualization techniques. Specifically, the present BOS imaging method removes the need for a physically patterned retroreflective background within the flow of interest and is therefore insensitive to the changing conditions due to the flow. For example, in a wind tunnel used for aerodynamics testing, there are vibrations and temperature changes that can affect the entire tunnel and anything inside it. Any patterned background within the wind tunnel will be subject to these changing conditions and those effects must be accounted for in the post-processing of the BOS image. This post-processing is not necessary in the Projected BOS process here. In the Projected BOS system, a pattern is projected onto a retroreflective background across the flow of interest (Figure 1). The imaged pattern in this configuration can be made physically (a pattern on a transparent slide) or can be digitally produced on an LCD screen. In this projection scheme, a reference image can be taken at the same time as the signal image, facilitating real-time BOS imaging and the pattern to be changed or optimized during the measurements. Thus far, the Projected BOS imaging technology has been proven to work by visualizing the air flow out of a compressed air canister taken with this new system (Figure 2).
Source is Free NASA Image library Figure 1. Schematic of the Projected BOS Imaging system. The Density Object is the flow to be visualized and BS refers to the beam splitter.
Benefits
  • Customizable: the pattern used for imaging can be easily changed during measurements.
  • Cheaper: without expensive-to-produce physically patterned retroreflective backgrounds, the flow visualization measurements can be done with less resources.
  • Vibration tolerant: without a physical pattern within the flow of interest, the pattern is not affected by vibrations or other changing conditions caused by the flow.
  • Real-time measurements: having an included reference camera allows for reference and signal images to be taken simultaneously.
  • Multi-functional: the system can be used to do shadowgraph imaging (no pattern needed) in addition to the typical BOS technique.

Applications
  • Research: air flow and aerodynamics visualization
  • Industrial: thermal management or heat-loss visualization
  • Industrial: gas or leak detection
Technology Details

instrumentation
LAR-TOPS-365
LAR-20041-1-CON LAR-20041-1
11,796,469
Similar Results
Assembly for Simplified Hi-Res Flow Visualization
NASAs single grid, self-aligned focusing schlieren optical assembly is attached to a commercial-off-the-shelf camera. It directs light from the light source through a condenser lens and linear polarizer towards a polarizing beam-splitter where the linear, vertically-polarized component of light is reflected onto the optical axis of the instrument. The light passes through a Ronchi ruling grid, a polarizing prism, and a quarter-wave plate prior to projection from the assembly as right-circularly polarized light. The grid-patterned light (having passed through the Ronchi grid) is directed past the density object onto a retroreflective background that serves as the source grid. Upon reflection off the retroreflective background, the polarization state of light is mirrored. It passes the density object a second time and is then reimaged by the system. Upon encountering the polarizing prism the second time, the light is refracted resulting in a slight offset. This refracted light passes through the Ronchi ruling grid, now serving as the cutoff grid, for a second time before being imaged by the camera. Both small- and large-scale experimental set ups have been evaluated and shown to be capable of fields-of-view of 10 and 300 millimeters respectively. Observed depths of field were found to be comparable to existing systems. Light sources, polarizing prisms, retroreflective materials and lenses can be customized to suit a particular experiment. For example, with a high speed camera and laser light source, the system has collected flow images at a rate of 1MHz.
Image from internal NASA presentation developed by inventor and dated May 4, 2020.
Reflection-Reducing Imaging System for Machine Vision Applications
NASAs imaging system is comprised of a small CMOS camera fitted with a C-mount lens affixed to a 3D-printed mount. Light from the high-intensity LED is passed through a lens that both diffuses and collimates the LED output, and this light is coupled onto the cameras optical axis using a 50:50 beam-splitting prism. Use of the collimating/diffusing lens to condition the LED output provides for an illumination source that is of similar diameter to the cameras imaging lens. This is the feature that reduces or eliminates shadows that would otherwise be projected onto the subject plane as a result of refractive index variations in the imaged volume. By coupling the light from the LED unit onto the cameras optical axis, reflections from windows which are often present in wind tunnel facilities to allow for direct views of a test section can be minimized or eliminated when the camera is placed at a small angle of incidence relative to the windows surface. This effect is demonstrated in the image on the bottom left of the page. Eight imaging systems were fabricated and used for capturing background oriented schlieren (BOS) measurements of flow from a heat gun in the 11-by-11-foot test section of the NASA Ames Unitary Plan Wind Tunnel (see test setup on right). Two additional camera systems (not pictured) captured photogrammetry measurements.
Schlieren
Schlieren System Captures Brilliant Shockwave Images
Supersonic flight over land is generally prohibited because sonic booms created by shockwaves disturb people on the ground and can damage property. Armstrong innovators are working to solve this problem through a variety of innovative techniques that measure, characterize, and mitigate sonic booms. The BOSCO technology is helping researchers understand how sonic booms travel through the air. How It Works Armstrong's patented system visualizes air density gradients generated by air compressing as it flows around an object. Researchers first obtain a celestial background image and then collect a series of images of an object in supersonic flow in front of the celestial object. The density change in the air refracts the light, shifting the background as compared to the undisturbed background image. The amount of movement corresponds directly to density gradients in the airflow. Using computer algorithms to analyze the images, resultant images essentially show the distortions caused by the aerodynamic flow of shockwaves passing between the camera and the celestial background. Why It Is Better Schlieren photography has been used for years in wind tunnels, where the environment is controlled. BOSCO enables its use in the real atmosphere with real propulsion systems. Studying life-sized aircraft flying through Earth's atmosphere provides better results than modeling and can help engineers design better and quieter supersonic airplanes. In addition to studying shock waves for aircraft, NASA's schlieren techniques have the potential to aid the understanding of a variety of flow phenomena and air density changes, such as investigating air flows around tall buildings and the tips of wind turbines and helicopter blades.
Image from NASA image library https://images.nasa.gov/details-ACD21-0016-003_F4_P4_4-15_12Hprint.
Digital Projection Focusing Schlieren System
NASAs digital projection focusing schlieren system is attached to a commercial-off-the-shelf camera. For focusing schlieren measurements, it directs light from the light source through a condenser lens and linear polarizer towards a beam-splitter where linear, vertically-polarized component of light is reflected onto the optical axis of the instrument. The light passes through the patterned LCD element, a polarizing prism, and a quarter-wave plate prior to projection from the assembly as left- or right-circularly polarized light. The grid-patterned light (having passed through the LCD element) is directed past the density object onto a retroreflective background (RBG) that serves as the source grid. Upon reflection off the RBG, the polarization state of light is mirrored. It passes the density object a second time and is then reimaged by the system. Upon encountering the polarizing prism the second time, the light is slightly offset. This refracted light passes through the LCD element, now serving as the cutoff grid, for a second time before being imaged by the camera. The LCD element can be programmed to display a variety of grid patterns to enable sensitivity to different density gradients. the color properties of the LCD can be leveraged in combination with multiple colored light sources to enable simultaneous multi-color, multi-technique data collection.
Plenoptic camera
Plenoptic Camera
This camera incorporates an array of 470 x 360 microlenses, with each microlens producing an image onto a 14 x 14 pixel array. Specific colors or spectra can be continuous or arbitrarily determined; and can be easily and inexpensively modified. Modifications of the collected spectra can be useful for different applications where the emitted light needs to be analyzed to determine qualitative or quantitative information about a flow, object, or scene. The sensor can measure fluid, mechanical, thermodynamic, or structural properties of gases, liquids, and solids.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo