Metallization for SiC Semiconductors

electrical and electronics
Metallization for SiC Semiconductors (LEW-TOPS-126)
Simultaneous ohmic contacts and the process to make them
Overview
Scientists at NASA's Glenn Research Center have developed and patented improved ohmic contacts, and a fabrication method for them, that will speed the production of silicon carbide (SiC) sensors and electronics that operate in high-temperature, harsh environments. Conventional fabrication techniques require multiple time-consuming and costly processes to form ohmic contacts separately onto donor (n-type) and acceptor (p-type) surfaces. Glenn's innovation creates universal and simultaneous ohmic contacts for both n- and p-type SiC semiconductors without compromising reliability and contact robustness. These ohmic contacts make it significantly less expensive and easier to fabricate high-temperature SiC sensors and electronics that can monitor in real time, even within harsh environments such as jet and rocket engines.

The Technology
To avoid catastrophic failure, traditional electrical ohmic contacts must be placed at some distance from the optimal position (especially for sensors) in high-temperature environments. In addition, conventional metallization techniques incur significant production costs because they require multiple process steps of successive depositions, photolithography, and etchings to deposit the desired ohmic contact material. Glenn's novel production method both produces ohmic contacts that can withstand higher temperatures than ever before (up to 600°C), and permits universal and simultaneous ohmic contacts on n- and p-type surfaces. This makes fabrication much less time-consuming and expensive while also increasing yield. This innovative approach uses a single alloy conductor to form simultaneous ohmic contacts to n- and p-type 4H-SiC semiconductor. The single alloy conductor also forms an effective diffusion barrier against gold and oxygen at temperatures as high as 800°C. Glenn's extraordinary method enables a faster and less costly means of producing SiC-based sensors and other devices that provide quicker response times and more accurate readings for numerous applications, from jet engines to down-hole drilling, and from automotive engines to space exploration.
Fighter Jet Glenn's novel metallization process enables SiC sensors that provide reliable, accurate readings from directly within jet and automotive engine chambers
Benefits
  • Efficient: Permits a single metal conductor scheme to form ohmic contacts on n- and p-type SiC simultaneously
  • Low-cost: Reduces the complexity and cost associated with conventional fabrication techniques
  • Durable: Operates at 600°C, extending device functionality and lifetime
  • Reliable: Enables close proximity of SiC sensors and devices to high-temperature environments, improving the fidelity and accuracy of readings

Applications
  • Automotive
  • Sensors
  • Communications
  • Power generation
  • Oil and gas exploration
  • Advanced energy storage
  • Aerospace
  • Venus space missions
Technology Details

electrical and electronics
LEW-TOPS-126
LEW-18538-1 LEW-18928-1 LEW-19334-1 LEW-19470-1 LEW-19470-2
8,373,175 10,192,970 10,381,455 10,056,259 10,515,804
Similar Results
Jet Turbine Profile
Packaging for SiC Sensors and Electronics
Prior approaches to bonding a SiC sensor and a SiC cover member relied on either electrostatic bonding or direct bonding using glass frits. The problem with the former is that its relatively weak bond strength may lead to debonding during thermal cycling, while the latter requires the creation of apertures that can allow sealant to leak. Glenn's innovation uses NASA's microelectromechanical system direct chip attach (MEMS-DCA) technology that can be bulk-manufactured to reduce sensor costs. The MEMS-DCA process allows a direct connection to be made between chip and pins, thereby eliminating wire bonding. Sensors and electronics are attached in a single-stage process to a multifunctional package, which, unlike previous systems, can be directly inserted into the housing. Additional thick pins within the electrical outlet allow the package to be connected to external circuitry. Furthermore, because the top and bottom substrates' thermomechanical properties are similar to that of the sensors, the problem of mismatch in the coefficient of thermal expansion is significantly reduced, minimizing thermal cycling and component fatigue. By protecting sensors and electronics in temperatures up to 600°C, approximately twice what has previously been achievable, Glenn's innovation enables SiC components to realize one of their most exciting possibilities - direct placement within high-temperature environments.
Circuit Chip
Integrated Circuit Chips
NASA Glenn's durable, extreme-temperature, integrated circuit chips begin with the replacement of conventional silicon IC transistors with n-channel SiC junction field effect transistors (JFET) and resistors that can reliably function above 500°C. JFETs with the necessary high-temperature stability and electrical gain are fabricated from commercial 4H-SiC wafers with epilayers using dry etching and a self-aligned n-type ion implantation. An innovative circuit approach creates digital logic gates from these normally-on n-channel JFETs and resistors. Using two levels of 500°C durable metal to interconnect numerous SiC gates, complex circuits enabling a variety of control, operation and sensing functions for intelligent systems in harsh environments can be implemented in physically small chips. The challenge of getting electrical signals to and from the chip in a harsh environment is overcome by the use of the iridium interfacial stack (IrIS) that acts simultaneously as a bond metal and diffusion barrier, and can be used on an ohmic contact to the SiC. Combined with Glenn-developed high-temperature durable ceramic chip packaging and harsh environment sensor technology, this revolutionary durable integrated circuit technology is game changing for harsh-environment applications of all types.
Engine Rendering Explosion Sparks
SiC-Based Microstructures for Sensors
Glenn's invention is game-changing in its ability to produce ultra-thin SiC-based microstructures and diaphragms that are essential for high-sensitivity pressure sensors that not only monitor engines but can also act as biosensors (monitoring bone density or brain pressure). DSRIE offers selective etching that reliably isolates conductive microstructures from the bulk material and has precision-etch control that minimizes yield loss due to manufacturing defects. Therefore, the thickness of structures, such as diaphragms, can be ultra-thin and selectively realized during dopant reactive ion etching. The ultra-thin diaphragm is a key enabler for Glenn's novel pressure sensor that can measure at low pressures in the sub-psi range. Until now, batch fabrication of SiC sensors has been hindered by the fact that only one type of sensor per wafer could be produced at a time. Given the expense of fabrication, this limitation has greatly reduced the commercial viability of SiC sensors and electronics. Glenn's batch fabrication offers manufacturers the opportunity to simultaneously produce multiple multifunctional MEMS/NEMS products on a single SiC wafer. Such products include flow sensors, pressure sensors, biosensors, accelerometers, inertial sensors, angular rate sensors, and yaw rate sensors. By simplifying production, reducing capital equipment, and lowering production costs, Glenn's novel process makes the use of SiC-based MEMS/NEMS in sensors and electronics much more practical and attainable for countless industries.
Rocket Nozzles
Silicon Carbide Fiber Tows
SiC fiber tows and preform materials are commonly used as reinforcements in CMCs, to make parts for use in harsh, high-temperature environments such as aircraft engines. These materials are desirable for numerous high-temperature applications because of their very low weight and outstanding thermo-chemical inertness. However, the multiple-step process using electric furnaces to produce these materials have numerous drawbacks: they are very expensive ($10,000 to $25,000 per spool); they involve high temperatures (greater than 2000°C); they require high power (more than 700 watts); and they produce much wasted material. Glenn innovators have discovered an efficient way to improve the quality and strength of SiC fiber tows using a unique microwave-furnace design that induces molecular heating. Glenn's innovation relies on microwave sintering to convert a polymer to ceramic fibers/tows/yarns, or to manipulate commercially available SiC fibers to increase strength and improve other qualities. Not only can higher quality tows be produced, but also - for the first time - old, damaged, or otherwise unusable fibers can be improved and recycled, thereby saving significant costs by increasing yield. Even entire engine components can be placed in the furnace and restored. The desired results can be achieved in minutes rather than the usual hours or even days. Glenn's low-temperature microwave process provides greater control with less power, while also eliminating plasma generation and minimizing arcing events. Because this method also facilitates the shaping of the SiC fiber after initial processing, fabricating preforms with 2D or 3D architectures becomes simpler. Glenn's creative processing method makes producing SiC tows and preforms much less expensive, opening them up for increased use in a broad range of applications.
Molten Gold Pour
Silicon Carbide (SiC) Fiber-Reinforced SiC Matrix Composites
Aimed at structural applications up to 2700°F, NASA's patented technologies start with two types of high-strength SiC fibers that significantly enhance the thermo-structural performance of the commercially available boron-doped and sintered small-diameter “Sylramic” SiC fiber. These enhancement processes can be done on single fibers, multi-fiber tows, or component-shaped architectural preforms without any loss in fiber strength. The processes not only enhance every fiber in the preforms and relieve their weaving stresses, but also allow the preforms to be made into more shapes. Environmental resistance is also enhanced during processing by the production of a protective in-situ grown boron-nitride (iBN) coating on the fibers. Thus the two types of converted fibers are called “Sylramic-iBN” and “Super Sylramic-iBN”. For high CMC toughness, two separate chemical vapor infiltration (CVI) steps are used, one to apply a boron nitride coating on the fibers of the preform and the other to form the SiC-based matrix. The preforms are then heat treated not only to densify and shrink the CVI BN coating away from the SiC matrix (outside debonding), but also to increase its creep resistance, temperature capability, and thermal conductivity. One crucial advantage in this suite of technologies lies in its unprecedented customizability. The SiC/SiC CMC can be tailored to specific conditions by down-selecting the optimum fiber, fiber coating, fiber architecture, and matrix materials and processes. In any formulation, though, the NASA-processed SiC fibers display high tensile strength and the best creep-rupture resistance of any commercial SiC fiber, with strength retention to over 2700°F.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo