Novel, Solid-State Hybrid Ultracapacitor Battery

Power Generation and Storage
Novel, Solid-State Hybrid Ultracapacitor Battery (MFS-TOPS-75)
Solid-state perovskite material offers exceptional capacitance with battery-like power delivery
Overview
NASA's Marshall Space Flight Center has developed a solid-state ultracapacitor with a unique combination of high capacitance and battery-like discharge characteristics. The high capacitance in a solid-state form can enable a new type of ultracapacitor, and, in combination with the ability to deliver sustained power like a battery, can perhaps enable an entirely new class of energy storage devices. Test devices have demonstrated high capacitance, and uniquely, a discharge behavior that is more typical of a battery. Data show that these test devices discharge rapidly down to a certain voltage, and then discharge slowly like a battery. Hence, the term hybrid ultracapacitor is used to describe the technology. The subject technology was developed as a result of efforts to replace range-safety batteries used to power the systems that destroy off-course space launch vehicles. Other commercial applications where ultracapacitors or batteries are used may benefit as well.

The Technology
The subject technology is an extension of closely related, solid-state ultracapacitor innovations by the same team of inventors. The primary distinction for this specific technology is the addition of co-dopants to affect the dielectric behavior of the barium titanatebased perovskite materials. These co-dopants include lanthanum and other rare earths as well as hydroxyl ions. The materials are processed at the nano scale, and are subjected to carefully designed thermal treatments as well. The presence of the hydroxyl ions has been shown to provide several orders of magnitude increase in the capacitance of the dielectric material. Additionally, these high capacitance values are obtained at relatively low voltages found in current consumer and industrial electronics. The capacitors tested to date are simple, single-layer devices. Ultimately, a range of manufacturing methods are possible for making commercial devices. Features of the technology enable manufacturing via traditional thick-film processing methods widely used in the capacitor industry, or via advanced printing methods for state-of-the-art printed electronics. Future efforts will be made to advance the manufacturing and packaging processes to increase device energy density, including multilayer devices and packages
This graph shows the discharge characteristics of a hybrid ultracapacitor test device.
Benefits
  • The subject technology has demonstrated capacitance values of up to 1,000 mF per device at 1 V for use as an ultracapacitor.
  • Solid-state design is safe and highly robust compared to traditional liquid or gel electrolyte designs. Additionally, a membrane separator is not used.
  • A unique, battery-like power delivery provides power over long cycle times, unlike the short duration power discharge characteristics typical of capacitors.
  • Devices can be reliably and repeatedly charged and discharged for many thousands of cycles with no degradation, unlike that of other types of rechargeable batteries.
  • Energy storage capacity is comparable to a typical rechargeable battery, but in a smaller volume and lighter weight package, and with much more rapid charging.

Applications
  • Target applications for the NASA technology are in pulsed power for in-space satellite propulsion systems. Other commercial terrestrial applications include rechargeable batteries for use in electric vehicles, or electric grid energy storage, cell phones, and numerous other consumer and industrial electronic devices.
Technology Details

Power Generation and Storage
MFS-TOPS-75
MFS-33228-1 MFS-33223-1 MFS-33228-2-DIV MFS-33228-3-DIV MFS-33115-1-DIV
-Cortés-Peña, A. Y., T. D. Rolin, and C. W. Hill. A Novel Solid State Ultracapacitor. No. M17-6033. 2017.

-Zhang, L., Shan, X., Bass, P. et al. Process and Microstructure to Achieve Ultra-high Dielectric Constant in Ceramic-Polymer Composites. Sci Rep 6, 35763. 2016.
Similar Results
Supercapacitors
Metal Oxide-Vertical Graphene Hybrid Supercapacitors
The electrodes are soaked in electrolyte, separated by a separator membrane and packaged into a cell assembly to form an electrochemical double layer supercapacitor. Its capacitance can be enhanced by a redox capacitance contribution through additional metal oxide to the porous structure of vertical graphene or coating the vertical graphene with an electrically conducting polymer. Vertical graphene offers high surface area and porosity and does not necessarily have to be grown in a single layer and can consist of two to ten layers. A variety of collector metals can be used, such as silicon, nickel, titanium, copper, germanium, tungsten, tantalum, molybdenum, & stainless steel. Supercapacitors are superior to batteries in that they can provide high power density (in units of kw/kg) and the ability to charge and discharge in a matter of seconds. Aside from its excellent power density, a supercapacitor also has a longer life cycle and can undergo many more charging sequences in its lifespan than batteries. This long life cycle means that supercapacitors last for longer periods of times, which alleviates environmental concerns associated with the disposal of batteries.
Car Charging
Internal Short Circuit Testing Device to Improve Battery Designs
Astronauts' lives depend on the safe performance and reliability of lithium-ion (Li-ion) batteries when they are working and living on the International Space Station. These batteries are used to power everything such as communications systems, laptop computers, and breathing devices. Their reliance on safe use of Li-ion batteries led to the research and development of a new device that can more precisely trigger internal short circuits, predict reactions, and establish safeguards through the design of the battery cells and packs. Commercial applications for this device exist as well, as millions of cell phones, laptops, and electronic drive vehicles use Li-ion batteries every day. In helping manufacturers understand why and how Li-ion batteries overheat, this technology improves testing and quality control processes. The uniqueness of this device can be attributed to its simplicity. In a particular embodiment, it is comprised of a small copper and aluminum disc, a copper puck, polyethylene or polypropylene separator, and a layer of wax as thin as the diameter of one human hair. After implantation of the device in a cell, an internal short circuit is induced by exposing the cell to higher temperatures and melting the wax, which is then wicked away by the separator, cathode, and anode, leaving the remaining metal components to come into contact and induce an internal short. Sensors record the cell's reactions. Testing the battery response to the induced internal short provides a 100% reliable testing method to safely test battery containment designs for thermal runaway. This jointly developed and patented technology is available for your company to license and develop into a commercial product. NASA does not manufacture products for commercial sale.
NEW CFC Front Image
Cryogenic Flux Capacitor
Storage and transfer of fluid commodities such as oxygen, hydrogen, natural gas, nitrogen, argon, etc. is an absolute necessity in virtually every industry on Earth. These fluids are typically contained in one of two ways; as low pressure, cryogenic liquids, or as a high pressure gases. Energy storage is not useful unless the energy can be practically obtained ("un-stored") as needed. Here the goal is to store as many fluid molecules as possible in the smallest, lightest weight volume possible; and to supply ("un-store") those molecules on demand as needed in the end-use application. The CFC concept addresses this dual storage/usage problem with an elegant charging/discharging design approach. The CFC's packaging is ingeniously designed, tightly packing aerogel composite materials within a container allows for a greater amount of storage media to be packed densely and strategically. An integrated conductive membrane also acts as a highly effective heat exchanger that easily distributes heat through the entire container to discharge the CFC quickly, it can also be interfaced to a cooling source for convenient system charging; this feature also allows the fluid to easily saturate the container for fast charging. Additionally, the unit can be charged either with cryogenic liquid or from an ambient temperature gas supply, depending on the desired manner of refrigeration. Finally, the heater integration system offers two promising methods, both of which have been fabricated and tested, to evenly distribute heat throughout the entire core, both axially and radially.
Image from NASA photo library
Solid-State Lithium-Sulfur Battery Tech Portfolio
The SABERS innovators developed novel lithium-sulfur designs, including sulfur-selenium on graphene cathodes, and lightweight bipolar plate stacking and packaging designs. SABERS is unique in several aspects: it deploys graphene-based manufacturing processes for the cathode and bipolar plates, and it uses a solid-state electrolyte in place of the liquid electrolyte found in other lithium-sulfur battery designs. The team has achieved energy densities over 500 W-hr/kg, and further improvements are expected. SABERS can meet the high-power requirements needed for aircraft take-off. SABERS is lightweight, safe, robust, and reliable. Furthermore, its manufacturing processes are scalable and environmentally friendly. Coin cell and pouch prototypes have been demonstrated to date. Development efforts continue and new portfolio innovations are expected. Major component technologies in SABERS include the following (as listed here and shown in the figure below). S/Se Cathode – Sulfur/Selenium on graphene scaffold (LAR-19556-1, LEW-20228-1) Solid Electrolyte – Solid-state electrolyte composites (LEW-20445-1) Bipolar Stack – Graphene plates (LAR-20257-1) Li-Metal Anode (Proprietary, under development) Packaging (Proprietary, under development) Robust computational models have been developed to support the battery materials design and are available to licensees to evaluate and optimize different materials combinations and performance targets.
Battery Management System
Battery Management System
The technology is comprised of a simple and reliable circuit that detects a single bad cell within a battery pack of hundreds of cells and it can monitor and balance the charge of individual cells in series. NASA's BMS is cost effective and can enhance safety and extend the life of critical battery systems, including high-voltage Li-ion batteries that are used in electric vehicles and other next-generation renewable energy applications. The BMS uses saturating transformers in a matrix arrangement to monitor cell voltage and balance the charge of individual battery cells that are in series within a battery string. The system includes a monitoring array and a voltage sensing and balancing system that integrates simply and efficiently with the battery cell array, limiting the number of pins and the complexity of circuitry in the battery. The arrangement has inherent galvanic isolation, low cell leakage currents, and allows a single bad or imbalanced cell in a series of several hundred to be identified. Cell balancing in multi-cell battery strings compensates for weaker cells by equalizing the charge on all the cells in the chain, thus extending battery life. Voltage sensing helps avoid damage from over-voltage that can occur during charging and from under-voltage that can occur through excessive discharging.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo