Reverse Vortex Ring (RVR)

mechanical and fluid systems
Reverse Vortex Ring (RVR) (MFS-TOPS-96)
For Dramatic Improvements in Turbomachinery Rotordynamic Stability
Overview
Innovators at the Marshall Space Flight Center (MSFC) have developed a mechanism for improving rotordynamic stability and response in turbomachinery. The Reverse Vortex Ring (RVR) invention was created specifically to solve instability problems with turbopumps on the Space Shuttle main engine, which has been a persistent problem for NASA engineers since the 1970s. With the advent of rotating machinery, high-speed rotors have been of interest to engineers. Rotating machinery has been employed in a wide range of applications in the past century, ranging from steam turbines for electric power generation to the turbo pumps used in the Space Shuttle Main Engines. As these machines have become more commonplace, there has been an increased demand for lightweight, compact designs. The required power output of these units has also increased leading to ever high power to weight ratios. These leaner designs are the hallmark of the aerospace industry.

The Technology
Vibration problems, which occur more frequently in high power to weight machines, often lead to costly down time, subsequent redesign, and, in some instances, catastrophic failure. A disproportionate number of vibration problems in rotating machinery can be attributed to highly pre-swirled fluid entering tight clearance locations such as seals and fluid bearings. The relationship between high fluid pre-swirl and undesirable vibration issues is clear. Machines with high levels of fluid pre-swirl are more susceptible to instabilities and vibration problems. A top priority in rotor dynamic design, therefore, is to develop devices to minimize the level of fluid pre-swirl entering tight clearance locations. The RVR was designed to condition the flow prior to entering the seal (or axial flow fluid-film bearing) so that the flow through the annular clearance is at a minimum purely axial. While conventional swirl brakes have only been shown to reduce pre-swirl by up to 30%, the RVR can actually reverse the direction of the swirl, so that circumferential fluid velocity flows in a direction counter to shaft rotation. Thus, a classic detriment to rotating machinery has now become an asset to ameliorate vibration issues through the RVR. The RVR is axially efficient, typically increasing the axial length of a smooth annular seal on the order of 10-12%. The RVR has been extensively tested and is now in use at NASA.
title The RVR is shown above attached to a damping seal. The RVR converts the destabilizing pre-swirled flow into a stabilizing flow in the opposite direction.
Benefits
  • Improved system design: allows turbopumps and similar devices to be made smaller, lighter, faster and safer.
  • Offers significant improvements over the state of the art: RVR creates a zero whirl frequency ratio, while commercially-available solutions, like swirl brakes, can only reduce the whirl frequency ratio by up to 30%.
  • Enables more stable, and more effective turbomachinery: RVR eliminates destabilizing rotor dynamic forces in turbomachinery and can even create a negative whirl frequency ratio, thus, increasing stability and dramatically increasing the allowable speed.
  • Features a small footprint: The invention takes up very little axial real estate, which is a precious commodity in turbomachinery: about 12% of the length of the seal.

Applications
  • Turbomachinery
  • Super pressurized turbines
  • Boiler feedwater pumps
  • Turbopumps
  • Labyrinth and annular seals
  • Petroleum industry
  • Power generation
Technology Details

mechanical and fluid systems
MFS-TOPS-96
MFS-33288-1
10,753,226
Similar Results
Turbo-electric compressor-generator CAD drawings
Axial Magnetic Flux Airflow Integrated Compressor-Generator-Motor Turbojet
The innovation uses the rotating blades of the compressor section to act as structural support for the generator. Since the compressor is the coolest part of the engine, it will reduce the potential for interference with magnetics and associated curie points of the permanent magnets. The placement of the generator in the cooler part of the engine flowpath (fan or compressor) will also improve the electrical insulation system's degradation and serve to improve overall system lifetime. The configuration proposed by Armstrong's design would be an axial magnetic flux permanent magnet generator or motor. The electrical/mechanical interface could serve to deliver power to the shaft of the turbojet/fan or extract power from the shaft. This axial electromagnetic flux design is more efficient for the combined function of aero-thermal heat transfer and generation of electricity. This is due to the relative amount of available cooling surface area, which has an advantage over radial designs given the total system volumetric aspect ratio of the generator/compressor section. When the system is viewed as a thermodynamic cycle, it is more efficient because it is essentially a regenerative cycle, with the heat of generation being fed back into the cycle instead of being released into the ambient surroundings
Anti-Phase Noise Suppression Rotor Technologies
Rotor noise and vibration are two sources of operational challenges for all aircraft operating with open rotors such as helicopters, unmanned aerial vehicles (UAVs), urban air mobility personal air vehicles, drones, and aircraft operating with ducted fans such as passenger aircraft. One disadvantage of convention rotor design is the noise due to noise-induced shed vortices generated by rotor blades. The unique problem with rotor noise and vibration is the periodic blade passage that causes a harmonic reinforcement and causes the rotor blades to vibrate and generate noise sources. This technology from NASA Ames seeks to optimize the implementation of anti-phase trailing edge designs and asymmetric blade tip treatments for rotor noise suppression and integrated aircraft noise solutions by incorporating the anti-phase rotor design concepts into an aircraft flight control system to reduce noise footprint. There are several embodiments of the invention, which include the following: (1) an anti-phase trailing edge design whereby the trailing edge pattern of the leading rotor blade is offset by a phase shift from the trailing edge pattern of the following blade; (2) an anti-phase rotor design implementing asymmetric blade tips with inverted airfoil; and (3) other anti-phase enabled concepts such as unequal blade length, ducted rotors with non-radial unequally spaced struts, and multi-axis tilt rotor design incorporating the anti-phase rotor design.
Source of image, https://commons.wikimedia.org/wiki/File:Compressor_blisk_on_display_(4).jpg
Integral Tuned Mass Absorber for Turbine Blades
Additive manufacturing methods (e.g. Laser Metal Sintering) are used to integrally fabricate a tuned-mass vibration absorber inside a turbine blade. The design approach uses an internal column manufactured as part of the blade that is optimized such that the dynamics of the blade damper system are rearranged and reduced according to the well-known science of tuned mass-absorption (TMA). The TMA concept has been implemented successfully in applications ranging from skyscrapers to liquid oxygen tanks for space vehicles. Indeed, this theory has been conceptually applied to bladed-disk vibration, but a practical design has not previously been reported. The NASA innovation addresses another important challenge for turbine blade vibration damper designs. All existing blade damper solutions are essentially incapable of being reliably predicted, so an expensive post-design test program must be performed to validate the expected response. Even then, the actual magnitude of the response reduction under actual hot fire conditions may never be known. The dynamic response of this tuned-mass-absorber design is both substantial and can be analytically predicted with high confidence, and thus the response can be incorporated fully into the up-front design process.
Motorized Production Machine
Precision Low Speed Motor Controller
The Precision Low Speed Motor Controller was designed as part of an OpTIIX telescope for the International Space Station. This technology is based on a precise current control loop and a high fidelity velocity measurement algorithm. The precise current loop uses a mathematical model of the electrical dynamics of the motor, custom electronics, and a PI controller to maintain a rapid response and smooth current control. The velocity measurement algorithm is embedded in the velocity loop that is wrapped around the current loop to provide a smooth low velocity control. Current motors are only capable of operating at approximately 15 rpm with a risk of excessive jitters. This technology reduces the responsive rpms by several orders of magnitude to approximately 0.025 rpms. This technology's capability has been integral to the success of several NASA projects, such as the OpTIIX telescope, the NASA Robonaut 2 robot , and the Modular Robotic Vehicle (MRV).
Gear Bearings
Gear Bearings
These patented gear bearings provide superior speed reduction in a small package. They form rolling friction systems that function both as gears and bearings and are compatible with most gear types, including spur, helical, elliptical, and bevel gears. These self-synchronized components can be in the form of planets, sun, rings, racks, and segments thereof. The design reduces micro chatter and eliminates rotational wobble to create smooth and precise control. It offers tighter mesh, more even gear loading, and reduced friction and wear. Gear bearings eliminate separate bearings, inner races, and carriers, as well as intermediate members between gears and bearings. Load paths go directly from one gear bearing component to another and then to ground. By incorporating helical gear teeth forms (including herringbone), gear bearings provide outstanding thrust bearing performance. They also provide unprecedented high- and low-speed reduction through the incorporation of phase tuning. Phase tuning allows differentiation in the number of teeth that must be engaged govbetween input and output rings in a planetary gearset, enabling successful reduction ratios of 2:1 to 2,000:1. They provide smooth and accurate control with rifle-true anti-backlash. This produces a planetary transmission with zero backlash. The gear bearing technology is based on two key concepts: the roller gear bearing and the phase-shifted gear bearing. All designs are capable of efficiently carrying large thrust loads. Existing gear systems have drawbacks including weak structures, large size, and poor reliability, as well as high cost for some types (e.g., harmon-ic drives). Gear bearings solve these problems with simpler construction, fewer parts, and superior strength. By selecting the appropriate manufacturing method and materials, gear bearings can be tailored to benefit any application, from toys to aircraft.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo X Logo Linkedin Logo Youtube Logo