X-Ray Crack Detectability

Manufacturing
X-Ray Crack Detectability (MSC-TOPS-106)
Optimizes X-ray radiography setups for crack sensitivity verification
Overview
Innovators at NASA Johnson Space Center have developed flaw size parameter modeling to determine if a specific X-ray setup can detect cracks of various sizes within materials. These models allow users to optimize X-ray radiography setups, for the detection of crack and crack-like flaws, to penetrate various materials to show internal structures such as the threaded pipe shown above. The ability to quantify crack detection sensitivity paves the way for crack detection requirements to be defined for X-ray radiography nondestructive evaluation (NDE) of manufactured parts. Improved industry requirements for reliable crack detection using x-ray radiography and improved X-ray setup optimization tools that are based on software modeling, such as this technology, may be desired by industry. The Model-Based X-Ray Crack Detection Requirements is a technology readiness level (TRL) 6 (system/sub-system model or prototype demonstrated in an operational environment). The innovation is now available for your company to license. Please note that NASA does not manufacture products itself for commercial sale.

The Technology
NASAs software technology uses an Image Quality Indicator (IQI)-based model that can predict whether cracks of a certain size can be detected, as well as a model that can provide appropriate conditions to optimize x-ray crack detection setup. Because this modeling software can predict minimum crack sizes that can be detected by a particular X-ray radiography testing setup, users can test various setups until the desired crack detection capabilities are achieved (predicted) by the modeling system. These flaw size parameter models use a set of measured inputs, including thickness sensitivity, detector modulation transfer function, detector signal response function, and other setup geometry parameters, to predict the minimum crack sizes detectable by the testing setup and X-ray angle limits for detecting such flaws. Current X-ray methods provide adequate control for detection of volumetric flaws but do not provide a high probability of detection (POD), and crack detection sensitivity cannot be verified for reliable detection. This results in reduced confidence in terms of crack detection. Given that these cracks, if undetected, can cause catastrophic failure in various systems (e.g., pressure vessels, etc.), verifying that X-ray radiography systems used for NDE can detect such cracks is of the utmost importance in many applications.
Shown: Schematic of an X-ray inspection of a manufactured metal part
Benefits
  • Characterizes crack detection capabilities
  • Optimizes and verifies X-ray radiography test setups
  • Uses non-invasive procedure on test article
  • Provides high probability of detection
  • Enables establishment of crack detection requirements/standards for enhanced quality control
  • Inexpensive to operate

Applications
  • Aerospace
  • Automotive
  • Civil engineering
  • Gas and oil pipeline manufacturing
  • Gas turbine manufacturing
  • Industrial manufacturing
  • Maritime vessels
  • Medical implant and prosthetic manufacturing
  • Structural engineering
Technology Details

Manufacturing
MSC-TOPS-106
MSC-26695-1 MSC-26580-1 MSC-26782-1
Similar Results
Microchips
X-Ray Diffraction Method to Detect Defects in Cubic Semiconductor (100) Wafers
This technology is a method of using x-ray diffraction (XRD) to evaluate the concentration of crystal structure defects, and thus the quality, of cubic (100)-oriented semiconductor wafers. Developed to enhance NASA's capabilities in fabricating chips for aeronautics applications, the method supplants existing methods that not only destroy the wafer in question, but can take as long as a day to determine the quality of a single wafer. The approach can be used with any commonly used semiconductor, including silicon, SiGe, GaAs and others, in a cubic (100) orientation, which covers at least 90% of commercial wafers. It can also be used to evaluate the quality of epi layers deposited on wafer substrates, and of ingots before they are sliced into wafers.
While Sochi is a coastal town on the Black Sea, the skiing events for the XXII Olympic Games are taking place about 40 kilometers (25 miles) inland. The venues are clustered around Krasnaya Polyana, a small town tucked between the Aibiga and Psekhako Ridges in the western Caucasus. This imageacquired by the Advanced Land Imager (ALI) on NASAs Earth Observing-1 (EO-1) satellite on February 8, 2014offers a view of the town and the ski facilities. The Rosa Khutor Alpine Center is the home to the downhill, snowboard, and freestyle events. The combined downhill skiing area measures about 20 kilometers (12 miles) in total, with the mens downhill course stretching 3,500 meters (11,482 feet) and featuring a 1,075-meter (3,526 foot) change in elevation. The highest lift climbs to the summit of Rosa Peak, which rises 2,320 meters (7,612 feet). While not being used for the Olympics, the nearby Black Pyramid mountain has downhill skiing trails as well. The same steep slopes that make Rosa Peak good for skiing also elevate the risk of avalanches. To protect against falling snow, planners installed a series of gas pipes along the top of the ridge. The pipes emit bursts of oxygen and propane that create small, controlled avalanches. Event organizers also installed a series of earthen dams to steer snow away from infrastructure, and they have deployed two backhoes to the top of Aibiga Ridge to knock cornices away before they pose a risk. The Laura Cross-country Ski and Biathalon Center is located to the north on Psekhako Ridge. It includes two stadiums, each with their own start and finish zones, two track systems for skiing and biathlon, as well as shooting areas and warm-up zones. The center is named for the Laura River, a turbulent river that flows nearby. NASA Earth Observatory image by Jesse Allen and Robert Simmon, using EO-1 ALI data provided courtesy of the NASA EO-1 team. Caption by Adam Voiland.
Pyramid Image Quality Indicator
The Pyramid Image Quality Indicator is based on the shape of a tall, 4-sided pyramid. Each side of the pyramid has a pair of vertical trenches which draw closer to each other and get narrower as they approach the tip of the pyramid. Inside the pyramid is a hollowed out conical section which may contain internal features for determining resolution or inserts that can be used for measuring contrast sensitivity. The system can be economically 3D printed and then coated, if need be, with high x-ray absorbing material. When a CT system operator is scanning a part, a specific method for that part which might include a large number of variables such as x-ray voltage, detector-to-source spacing, pixel size, etc. This established method will result in an effective level of detail for the resulting scan. The IQI is used to measure that level of detail. The operator may follow up the scan of the part with an identical scan of the IQI, which will allow a realistic measurement of parameters, like effective resolution or contrast sensitivity. The interior of the Pyramid IQI uses a 3D variant suited for 3D CT scan data tools, known as penetrameters. These penetrameters are a solid disc of material. A stack of discs of different diameters would accommodate a range of different thicknesses. The Pyramid IQI can be easily scaled for either larger or smaller parts. It can also be 3D printed using either plastic or metal additive manufacturing. This allows an end-user to match the material density of the IQI to that of the actual part.
Damage Detection System Prototype
Multidimensional Damage Detection System
The Damage Detection System consists of layered composite material made up of two-dimensional thin film damage detection layers separated by thicker, nondetection layers, coupled with a detection system. The damage detection layers within the composite material are thin films with a conductive grid or striped pattern. The conductive pattern can be applied on a variety of substrates using several different application methods. The number of detection layers in the composite material can be tailored depending on the level of damage detection detail needed for a particular application. When damage occurs to any detection layer, a change in the electrical properties of that layer is detected and reported. Multiple damages can be detected simultaneously, providing real-time detail on the depth and location of the damage. The truly unique feature of the System is its flexibility. It can be designed to gather as much (or as little) information as needed for a particular application using wireless communication. Individual detection layers can be turned on or off as necessary, and algorithms can be modified to optimize performance. The damage detection system can be used to generate both diagnostic and prognostic information related to the health of layered composite structures, which will be essential if such systems are utilized to protect human life and/or critical equipment and material.
First 3-D Printed Jet Engine
In-situ Characterization and Inspection of Additive Manufacturing Deposits using Transient Infrared Thermography
Additive manufacturing or 3-D printing is a rapidly growing field where solid, objects can be produced layer by layer. This technology will have a significant impact in many areas including industrial manufacturing, medical, architecture, aerospace, and automotive. The advantages of additive manufacturing are reduction in material costs due to near net shape part builds, minimal machining required, computer assisted builds for rapid prototyping, and mass production capability. Traditional thermal nondestructive evaluation (NDE) techniques typically use a stationary heat source such as flash or quartz lamp heating to induce a temperature rise. The defects such as cracks, delamination damage, or voids block the heat flow and therefore cause a change in the transient heat flow response. There are drawbacks to these methods.
Offshore oil and gas platform
Robotic Inspection System for Fluid Infrastructures
The Robotic Inspection System improves the inspection of deep sea structures such as offshore storage cells/tanks, pipelines, and other subsea exploration applications. Generally, oil platforms are comprised of pipelines and/or subsea storage cells. These storage cells not only provide a stable base for the platform, they provide intermediate storage and separation capability for oil. Surveying these structures to examine the contents is often required when the platforms are being decommissioned. The Robotic Inspection System provides a device and method for imaging the inside of the cells, which includes hardware and software components. The device is able to move through interconnected pipes, even making 90 degree turns with minimal power. The Robotic Inspection System is able to display 3-dimentional range data from 2-dimensional information. This inspection method and device could significantly reduce the cost of decommissioning cells. The device has the capability to map interior volume, interrogate integrity of cell fill lines, display real-time video and sonar, and with future development possibly sample sediment or oil.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo