Multidimensional Damage Detection System

sensors
Multidimensional Damage Detection System (KSC-TOPS-30)
Multidimensional system for detecting damage to surfaces and vessels
Overview
NASA Kennedy Space Center seeks partners interested in the commercial application of the Multidimensional Damage Detection System technology. The ability to detect damage to composite surfaces can be crucial, especially when those surfaces are enclosing a sealed environment that sustains human life and/or critical equipment or materials. Minor damage caused by foreign objects can, over time, eventually compromise the structural shell resulting in loss of life and/or destruction of equipment or material. The capability to detect and precisely locate damage to protective surfaces enables technicians to prognosticate the expected lifetime of the composite system as well as to initiate repairs when needed to prevent catastrophic failure or to extend the service life of the structure.

The Technology
The Damage Detection System consists of layered composite material made up of two-dimensional thin film damage detection layers separated by thicker, nondetection layers, coupled with a detection system. The damage detection layers within the composite material are thin films with a conductive grid or striped pattern. The conductive pattern can be applied on a variety of substrates using several different application methods. The number of detection layers in the composite material can be tailored depending on the level of damage detection detail needed for a particular application. When damage occurs to any detection layer, a change in the electrical properties of that layer is detected and reported. Multiple damages can be detected simultaneously, providing real-time detail on the depth and location of the damage. The truly unique feature of the System is its flexibility. It can be designed to gather as much (or as little) information as needed for a particular application using wireless communication. Individual detection layers can be turned on or off as necessary, and algorithms can be modified to optimize performance. The damage detection system can be used to generate both diagnostic and prognostic information related to the health of layered composite structures, which will be essential if such systems are utilized to protect human life and/or critical equipment and material.
Benefits
  • Diagnostic information collected by the system allows technicians to precisely locate damage and initiate repair activity when needed to prevent catastrophic failure or to extend structural service life
  • Modular allows damaged surfaces to be easily replaced without compromising system functionality
  • Flexible individual detection layers in the composite structure can be turned on or off to collect damage information as needed for a particular application. Algorithms can be modified to optimize system performance
  • Manufacturable conductive pattern for thin film layers can be applied on a variety of substrate materials using multiple application methods. Size, shape, and thickness can be customized to meet users requirements. Connection to the detection system is simple and easy to accomplish.
  • Prognostic systems ability to detect and locate damage enables technicians to predict the remaining expected lifetime of the composite system

Applications
  • Aircraft
  • Military Shelters
  • Solar Arrays
  • Critical Hardware Enclosures
  • Spacecraft
  • Space Habitats
  • Inflatable Structures
  • Smart Garments
Technology Details

sensors
KSC-TOPS-30
KSC-13588 KSC-13588-DIV1 KSC-13588-DIV2
9,233,765 10,138,005 9,365,302
Similar Results
crack testing
Method of Non-Destructive Evaluation of Composites
Guided wavefield techniques require excitation of guided waves in a specimen via contact or noncontact methods (such as attached piezoelectric transducers or laser generation). The resulting wavefield is recorded via noncontact methods such as laser Doppler vibrometry or air-coupled ultrasound. If the specimen contains damage, the waves will interact with that damage, resulting in an altered wavefield (compared to the pristine case). When guided wave modes enter into a delaminated region of a composite the energy is split above/below delaminations and travels through the material between delaminations. Some of the energy propagates beyond the delamination and re-emerges as the original guided wave modes. However, a portion of the wave energy is trapped as standing waves between delaminations. The trapped waves slowly leak from the delaminated region, but energy remains trapped for some time after the incident waves have propagated beyond the damage region. Simulation results show changes in the trapped energy at the composite surface when additional delaminations exist through the composite thickness. The results are a preliminary proof-of-concept for utilizing trapped energy measurements to identify the presence of hidden delaminations when only single-sided access is available to a component/vehicle. Currently, no other single-sided field-applicable NDT techniques exist for identifying hidden delamination damage.
System for In-situ Defect Detection in Composites During Cure
NASA's System for In-situ Defect (e.g., porosity, fiber waviness) Detection in Composites During Cure consists of an ultrasonic portable automated C-Scan system with an attached ultrasonic contact probe. This scanner is placed inside of an insulated vessel that protects the temperature-sensitive components of the scanner. A liquid nitrogen cooling systems keeps the interior of the vessel below 38°C. A motorized X-Y raster scanner is mounted inside an unsealed cooling container made of porous insulation boards with a cantilever scanning arm protruding out of the cooling container through a slot. The cooling container that houses the X-Y raster scanner is periodically cooled using a liquid nitrogen (LN2) delivery system. Flexible bellows in the slot opening of the box minimize heat transfer between the box and the external autoclave environment. The box and scanning arm are located on a precision cast tool plate. A thin layer of ultrasonic couplant is placed between the transducer and the tool plate. The composite parts are vacuum bagged on the other side of the tool plate and inspected. The scanning system inside of the vessel is connected to the controller outside of the autoclave. The system can provide A-scan, B-scan, and C-scan images of the composite panel at multiple times during the cure process. The in-situ system provides higher resolution data to find, characterize, and track defects during cure better than other cure monitoring techniques. In addition, this system also shows the through-thickness location of any composite manufacturing defects during cure with real-time localization and tracking. This has been demonstrated for both intentionally introduced porosity (i.e., trapped during layup) as well processing induced porosity (e.g., resulting from uneven pressure distribution on a part). The technology can be used as a non-destructive evaluation system when making composite parts in in an oven or an autoclave, including thermosets, thermoplastics, composite laminates, high-temperature resins, and ceramics.
Spacecraft Reentry
Robust Sensors Detect Material Ablation and Temperature Changes
Glenn's breakthrough technology introduces batch-fabricated, miniature sensors embedded and distributed over a large surface area of a material or product during the manufacturing process. The sensors can be utilized for test instrumentation or as an integrated in-situ monitoring system. This integrated manufacturing approach preserves the structural and mechanical system integrity by eliminating the antiquated plug-in approach, invasive machining, manual insertion, and gluing processes currently required to implant sensors into a material. The sensor ladder network of resistors and capacitors breaks down as result of the thermo-physical effects caused by temperature, shock, radiation, corrosion, or other reactions, causing a change in the electrical properties. A processor interprets these changes in the electrical properties and generates a high-resolution, large-area surface profile. The profile demonstrates the amount or rate of material deterioration and temperature change, and is used to optimize geometric structural design, develop materials, predict performance, and make decisions. These sensors play an important role as industries work to realize material performance and product design. This type of monitoring is ideal for infrastructures, nuclear enclosures, or any system susceptible to surface deterioration.
In Situ Wire Damage Detection and Rerouting System
In Situ Wire Damage Detection and Rerouting System
The tester was designed to monitor electrical faults in either online or offline modes of operation. In the online mode, wires are monitored without disturbing their normal operation. A cable can be monitored several times per second in the offline mode, and once per second in the online mode. The online cable fault locator not only detects the occurrence of a fault, but also determines the type of fault (short/open/intermittent) and the location of the fault. This enables the detection of intermittent faults that can be repaired before they become serious problems. Since intermittent faults occur mainly during operations, a built-in memory device stores all relevant fault data. This data can be displayed in real time or retrieved later so maintenance and repairs can be completed without spending countless hours attempting to pinpoint the source of the problem. Hardware and algorithms have also been developed to safely, efficiently, and autonomously transfer electrical power and data connectivity from an identified damaged/defective wire in a cable to an alternate wire path. This portion of the system consists of master and slave units that provide the diagnostic and rerouting capabilities. A test pulse generated by the master unit is sent down an active wire being monitored by the slave unit. When the slave unit detects the test pulse, it routes the pulse back to the master unit through a communication wire. When the master unit determines that a test pulse is not being returned, it designates that wire as faulty and reroutes the circuit to a spare wire.
Optical Fiber Routing and Sensor Location on MMOD Shield Test Article
MMOD Impact Detection and Location
Multiple strain sensors encoded into one or more optical fibers are affixed to a MMOD shield or structure. The optical fiber(s) is/are connected to a data collection device that records strain data at a frequency sufficient to resolve MMOD impact events. Strain data are processed and presented on a computer display. MMOD impact imparts a transient shock loading to a structure which is manifested as transient strain as the shock wave moves through the structure. MMOD impacts are determined from the time signature of, both, measured strain from multiple sensors on the optical fiber(s) as well as strain resulting from plastic strain induced in the MMOD shield and structure as a consequence of the MMOD impact (for materials exhibiting plastic strain). The array of strain sensors, encoded into one or more optical fibers using Fiber Bragg Grating (FBG) technology, records time varying strain to identify that a strike has occurred and at what time it occurred. Strike location information can be inferred from the residual plastic strain recorded by the multitude of strain sensors in the fiber(s). One or more optical fibers may be used to provide optimal coverage of the area of interest and/or to ensure a sufficient number of strain measurements are provided to accurately characterize the nature of the impact.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo