Electrical and Electronics
Electrical and Electronics
The scientific and technological development, behavior and application of electronic devices, circuits and systems involving the flow of electrons in semiconductors, gaseous media or a vacuum.
STS-135 Landing
Magnetic Shield Using Proximity Coupled Spatially Varying Superconducting Order Parameters
The invention uses the superconducting "proximity effect" and/or the "inverse proximity effect" to form a spatially varying order parameter. When designed to expel magnetic flux from a region of space, the proximity effect(s) are used in concert to make the superconducting order parameter strongly superconducting in the center and more weakly superconducting toward the perimeter. The shield is then passively cooled through the superconducting transition temperature. The superconductivity first nucleates in the center of the shielding body and expels the field from that small central region by the Meissner effect. As the sample is further cooled the region of superconducting order grows, and as it grows it sweeps the magnetic flux lines outward.
Radio Waves
Dynamic Range Enhancement of High-Speed Data Acquisition Systems
Electronic waveforms exist that exceed the capabilities of state-of-the-art data acquisition hardware that is commonly available. The electronic waveforms that need to be measured simultaneously contain wide bandwidth, high frequency content, a DC reference, high dynamic range, and a high crest factor. The NASA Glenn high-speed data acquisition system creates a voltage compression effect with a custom transfer function that is adapted to the voltage range, frequency bandwidth, and electrical impedance of both the test article and data acquisition device. The compression transfer function is later reversed (or decompressed) with a software algorithm to restore the original signal's voltage from the acquired data. The data is thus improved via better signal-to-noise ratio, better low-amplitude accuracy, better resolution, and preservation of high-frequency spectral content. The circuit can be realized with either passive components or both active and passive components. Either realization is specialized for the test article and data acquisition hardware. This is an early-stage technology requiring additional development. Glenn welcomes co-development opportunities.
Gated Chopper Integrator (GCI)
The gated chopper integrators function is to amplify low level signals without introducing excessive offset and noise and to do this with accurate and variable gain. The unique feature of the technology is the inherent demodulation present in the integrator which eliminates the need for filtering and allows the user to accurately vary the gain in finely graduated steps. The reduction of the offset of the amplifier is very efficient and lends itself to radiation hardened by design implementations. Since total dose can change the offset due to varying threshold voltages of CMOS transistors, the circuit adapts and compensates for any variations. The autozero integrator also adapts to its own varying offsets. The net outcome is variable, accurate gain that is very robust to supply variations, radiation effects and aging. The technology was developed as a multi-channel thermopile signal processor. Lab measurements indicate very accurate amplification with low offset and noise.
The Magnetospheric Multiscale (MMS) mission is a Solar Terrestrial Probes mission comprising four identically instrumented spacecraft that will use Earth's magnetosphere as a laboratory to study the microphysics of three fundamental plasma processes: magnetic reconnection, energetic particle acceleration, and turbulence. These processes occur in all astrophysical plasma systems but can be studied in situ only in our solar system and most efficiently only in Earth's magnetosphere, where they control the dynamics of the geospace environment and play an important role in the processes known as "space weather."
Microstrip Circuit and Material Characterization System
The Microstrip Circuit and Material Characterization System can measure superconducting film ohmic loss at millimeter wave frequencies using a vector network analyzer. The vector network analyzer measures amplitude and phase properties of the network parameters of the film. The system consists of a two-port waveguide structure. The ports are used to transmit and receive millimeter wave power into and out of the superconducting film. The waveguide structure is used to transform waveguide characteristic impedance to microstrip line impedance over broad ranges of frequencies to make contact with the superconducting film. The superconducting film contains microstrip line resonators that can be used to measure ohmic loss and the effective dielectric constant at various frequencies. The Microstrip Circuit and Material Characterization System functions by connecting to a millimeter wave transmitter and receiver. The system is used to measure transmission loss of a microstrip line sample. For superconducting microstrip film measurement, the device needs to be cooled below the superconductor's critical temperature in order to measure the film ohmic loss and the transmission line's propagation constant. The system can be used to measure loss in the microstrip line as low as 10 ppm. The system is operable within a temperature range from 0K to 320K.
NASA Goddard Space Flight Center Webb Instruments Perfected to Microscopic Levels
Custom Application Specific Integrated Circuit for Detector Control and Data Acquisition
The ASIC receives signals from the detector via an analog-to digital converter (ADC). This ADC includes a full analog front-end with signal routing and pre-amplification. The digital signals are then routed through an Output Data Formatter and are directed to warm electronics. A digital Control component provides clocking for the detector and external serial control. The BIAS component provides quiet voltages to the detector. This electrical architecture minimizes thermal stress loads while maximizing signal integrity. The processing functions are performed at the highest allowable temperatures minimizing the number of components that require cooling.
Underground Mine
Graphene-Based Reversible Nano-Switch/Sensor Schottky Diode Device
Glenn's graphene-based nanoSSSD provides dual-use functionality and reversibility characteristics in a compact and reliable package. The nanoSSSD can be connected to a visual and/or sound alarm that autonomously triggers in the presence of specially selected gases, such as ammonia, hydrogen, hydrocarbons, nitrogen oxides, or carbon monoxide. The device includes a doped substrate, an insulating layer disposed on the substrate, an electrode formed on the insulating layer, and one or more thin films of graphene deposited on an electrodized, doped silicon wafer. The graphene film acts as a conductive path between a gold electrode deposited on top of a silicon dioxide layer and the reversible side of the silicon wafer, so as to form a Schottky diode. The substrate in Glenn's innovative device can be fabricated with either n-doped or p-doped silicon, allowing the device to achieve enhanced compatibility with specific silicon-based nanoelectronic circuits as required. The graphene's two-dimensional nature maximizes the sensing area, and the device itself contains no moving parts, unlike other devices that offer dual switching/sensing functionality, which often make use of mechanical actuators such as cantilevers. Those devices are more complex to fabricate and more likely to reduce the mean-time-to-failure. By contrast, the relative simplicity of the Glenn nanoSSSD makes it more robust and therefore lends itself to settings where frequent replacement is not an option. This mechanism has the potential to revolutionize sensing/switching applications from embedded biomedical devices to jet turbine engines to homeland security screening systems.
Fighter Jet
Metallization for SiC Semiconductors
To avoid catastrophic failure, traditional electrical ohmic contacts must be placed at some distance from the optimal position (especially for sensors) in high-temperature environments. In addition, conventional metallization techniques incur significant production costs because they require multiple process steps of successive depositions, photolithography, and etchings to deposit the desired ohmic contact material. Glenn's novel production method both produces ohmic contacts that can withstand higher temperatures than ever before (up to 600°C), and permits universal and simultaneous ohmic contacts on n- and p-type surfaces. This makes fabrication much less time-consuming and expensive while also increasing yield. This innovative approach uses a single alloy conductor to form simultaneous ohmic contacts to n- and p-type 4H-SiC semiconductor. The single alloy conductor also forms an effective diffusion barrier against gold and oxygen at temperatures as high as 800°C. Glenn's extraordinary method enables a faster and less costly means of producing SiC-based sensors and other devices that provide quicker response times and more accurate readings for numerous applications, from jet engines to down-hole drilling, and from automotive engines to space exploration.
sounding rocket (from GSFC flickr)
Microcontroller Altimeter (uCA)
The uCA combines a high accuracy integrated silicon pressure sensor with MOSFET technology to provide traditional Normally-Open and Normally-Closed switches capable of high power switching for a wide variety of applications. The output of the sensor and switches are provided to the user for real-time altitude determination as well as discrete altitude trip point knowledge. Updates to the altitude trip points are facilitated through USB programming, which allows for in-field adjustment and provides added flexibility late during integration and testing.
Polymer Nanofiber-Based Reversible Nano-Switch/Sensor Schottky Diode Device
Glenn's innovative nanoSSSD device includes a doped semiconducting substrate, an insulating layer deposited on the substrate, an electrode formed on the insulating layer, and at least one polymer nanofiber deposited on the electrode. The deposited nanofiber provides an electrical connection between the electrode and the substrate, serving as the electro-active element in the device. The nanofiber is generally composed of a customized polymer (e.g., polyaniline) that is extremely sensitive to the adsorption and desorption of a single gas molecule. As gas molecules are adsorbed and desorbed, the resistivity of the customized polymer also changes, providing its sensing capacity. When the nanoSSSD device senses a selected gaseous species, the switching portion of the device automatically actuates, sending a signal to the control component. This control component activates the output (warning) device. In addition to its ability to detect harmful gases (including ammonia, hydrogen, hydrocarbons, nitrogen oxides, carbon monoxide, and carbon dioxide), Glenn's device can also feature conducting polymers that are sensitive to UV radiation. Glenn's nanoSSSD technology has great commercial potential, particularly in situations where frequent replacement of the switch/sensor is impractical.
View more patents
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo