Gated Chopper Integrator (GCI)

electrical and electronics
Gated Chopper Integrator (GCI) (GSC-TOPS-134)
A variable gain, low offset, low noise chopper amplifier for amplifying microvolt level signals.
Overview
NASAs Goddard Space Flight Center has developed an innovative technique for amplification of microvolt level signals requires gains of at least a thousand. Offsets and noise in the amplifier chain will be amplified by the same amount which can saturate the amplifier or swamp the signal so that it is not resolvable. Other methods use chopping and/or autozero techniques to lower the offset and noise. The key disadvantages of these methods are they require filters before and/or after demodulation of the amplified signal and delay equalization to account for the delay through the amplifier(s) prior to the demodulator. The gain of these circuits is generally limited to fixed values determined by resistors. These methods are also susceptible to transient noise associated with the switching action of the modulator.

The Technology
The gated chopper integrators function is to amplify low level signals without introducing excessive offset and noise and to do this with accurate and variable gain. The unique feature of the technology is the inherent demodulation present in the integrator which eliminates the need for filtering and allows the user to accurately vary the gain in finely graduated steps. The reduction of the offset of the amplifier is very efficient and lends itself to radiation hardened by design implementations. Since total dose can change the offset due to varying threshold voltages of CMOS transistors, the circuit adapts and compensates for any variations. The autozero integrator also adapts to its own varying offsets. The net outcome is variable, accurate gain that is very robust to supply variations, radiation effects and aging. The technology was developed as a multi-channel thermopile signal processor. Lab measurements indicate very accurate amplification with low offset and noise.
France
Benefits
  • Lower cost variable amplification
  • High accuracy

Applications
  • Medical
  • Scientific
  • Industrial
  • Space
Technology Details

electrical and electronics
GSC-TOPS-134
GSC-16938-1
9985594
Similar Results
Radio Waves
Dynamic Range Enhancement of High-Speed Data Acquisition Systems
Electronic waveforms exist that exceed the capabilities of state-of-the-art data acquisition hardware that is commonly available. The electronic waveforms that need to be measured simultaneously contain wide bandwidth, high frequency content, a DC reference, high dynamic range, and a high crest factor. The NASA Glenn high-speed data acquisition system creates a voltage compression effect with a custom transfer function that is adapted to the voltage range, frequency bandwidth, and electrical impedance of both the test article and data acquisition device. The compression transfer function is later reversed (or decompressed) with a software algorithm to restore the original signal's voltage from the acquired data. The data is thus improved via better signal-to-noise ratio, better low-amplitude accuracy, better resolution, and preservation of high-frequency spectral content. The circuit can be realized with either passive components or both active and passive components. Either realization is specialized for the test article and data acquisition hardware. This is an early-stage technology requiring additional development. Glenn welcomes co-development opportunities.
Cascaded Offset Optical Modulator
A unique challenge in the development of a deep space optical SDR transmitter is the optimization of the ER. For a Mars to Earth optical link, an ER of greater than 33 dB may be necessary. A high ER, however, can be difficult to achieve at the low Pulse Position Modulation (PPM) orders and narrow slot widths required for high data rates. The Cascaded Offset Optical Modulator architecture addresses this difficulty by reducing the width of the PPM pulse within the optical modulation subsystem, which relieves the SDR of the high signal quality requirements imposed by the use of an MZM. With the addition of a second MZM and a variable time delay, all of the non-idealities in the electrical signal can be compensated by slightly offsetting the modulation of the laser. The pulse output is only at maximum intensity during the overlap of the two MZMs. The width of the output pulse is effectively reduced by the offset between MZMs. Measurement and analysis of the system displayed, for a 1 nanosecond pulse width, extinction ratios of of 32.5 dB, 39.1 dB, 41.6 dB, 43.3 dB, 45.8 dB, and 48.2 dB for PPM orders of 4, 16, 32, 64, 128, and 256, respectively. This approach is not limited to deep space optical communications, but can be applied to any optical transmission system that requires high fidelity binary pulses without a complex component. The system could be used as a drop-in upgrade to many existing optical transmitters, not only in free space, but also in fiber. The system could also be implemented in different ways. With an increase in ER, the engineer has the choice of using the excess ER for channel capacity, or simplifying other parts of the system. The extra ER could be traded for reduced laser power, elimination of optical amplifiers, or decreased system complexity and efficiency.
Robust High Temperature SiC Op Amps Practical Fabrication
The technology is part of a new generation of NASA Glenn SiC integrated circuits with unprecedented durability in the field of high-temperature electronics. For robust operational amplifiers based on SiC Junction Field Effect Transistors (JFETs), this novel compensation method mitigates issues with threshold voltage variations that are an effect of die location on the wafer. Modern high-temperature op amps on the market fall short due to temperature limits (only 225C for silicon-based devices). Previously, researchers noted that multiple op amps on a single SiC wafer had different amplification properties due to different threshold voltages that varied spatially as much as 18&#37 depending on the circuit's distance from the SiC wafer center. While 18&#37 is okay for some applications, other important system applications demand better precision. By applying this technology to the amplifier circuit design process, the op amp will provide the same signal gain no matter its position on the wafer. The compensation approach enables practical signal conditioning that works from 25C up to 500C.
Ground Station
Signal Combiner for Wideband Communication
Through low-loss signal combination, Glenn is leading the way to optimize radio transmission remotely during self-checking routines. Glenn's signal combiner offers a simple method to minimize signal loss significantly when combining two signals. Using conventional combiners in bit-error-rate testing results in a loss of 3 to 4 dB per band, and with a directional coupler the secondary signal experiences losses of 10 dB or more. Moreover, during signal measurements, the additional components must be placed and later removed to prevent any impact to the measurement, making for a cumbersome process. Glenn's solution is to combine the primary and secondary signals in the frequency domain through the use of a frequency division diplexer/multiplexer in combination with a wideband ADC. The multiplexer selects one or more bands in the frequency domain, and the ADC performs a non-linear conversion to digital domain by folding out-of-band signals in with the primary signal. NASA makes use of subsampling a given band within the ADC bandwidth to fold it into another band of interest, effectively frequency-shifting them to a common frequency bandwidth. Glenn's breakthrough method has two significant advantages over the conventional use of a power combiner or directional coupler in bit-error-rate testing: 1) it combines signal and noise (secondary signal) with very low loss, and 2) it enables the selection of the desired signal-to-noise ratio with no need for the later cumbersome removal of components. This streamlined process allows for invaluable in-situ or installed measurement. Glenn's novel technology has great potential for satellite, telecommunications, and wireless industries, especially with respect to equipment testing, measurement, calibration, and check-out.
Low Flying Plane
A Method for Reducing Broadband Noise
This NASA technology is ideally suited to absorb sounds below 1000 Hz (at the low end of human auditory range), which commercially available materials have struggled to absorb effectively. NASA innovators designed the acoustic liner to mimic the geometry and the low-frequency acoustic absorption of natural reeds. To provide excellent noise absorption that endures even in a variety of challenging conditions, researchers have created and tested prototypes of acoustic filters using thin and lightweight parallel-stacked tubes one-fourth to three-eights of an inch in diameter. The assembly can feature a porous or perforated face sheet positioned on one or more sides of the acoustic absorber layer to increase noise-reduction capability as needed. These filters have demonstrated exceptional acoustic absorption coefficients in the frequency range of 400 to 3000 Hz. Results indicate that these assemblies can be additively manufactured from synthetic materials, generally plastic; however, ceramics, metals, or other materials can also be used. The reeds can be narrow or wide, hollow or solid, straight or bent, etc., giving this acoustic liner remarkable flexibility and versatility to meet the needs of virtually any application. This technology effectively demonstrates that a new class of structures can now be considered for a wide range of environments and applications that need durable, lightweight, broadband acoustic absorption that is effective at various frequencies, particularly between 400 and 3000 Hz.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo X Logo Linkedin Logo Youtube Logo