Calibration System for Automated Fiber Placement

manufacturing
Calibration System for Automated Fiber Placement (LAR-TOPS-339)
Creating accurate defect standards for an in-situ inspection system
Overview
Innovators at NASA's Langley Research Center have developed a Calibration System for Automated Fiber Placement (AFP) machines. AFP is a modern composites-manufacturing method offering speed, repeatability, and waste-minimization benefits over traditional layup techniques. Used to make aerospace parts and wind-turbine blades, AFP employs a robotic arm to apply strips of carbon fiber prepreg (aka composite tape, or tows) to build up a composite part layer by layer. While advantageous, any imperfectly placed (or slipped) tows generate lap-and-gap defects relative to adjacent tows which can degrade structural integrity by as much as 30%. Currently, manual visual inspection is used to identify and fix such defects before curing, which is highly labor intensive. In-situ inspection systems are emerging, but no method exists to create accurate "defect standards" to facilitate active system calibration. NASA's new calibration system will enable the next generation of AFP in situ inspection technologies.

The Technology
NASA's new calibration system is a proprietary method to quickly design and make predictable and repeatable gap-and-overlap defects when employing AFP. The system creates defects within the course of layup with known sizes, geometries, and locations. Using this defect-creation technique, one can now accurately quantify the ability to detect defects on inspection systems, perform accurate risk assessments, and calibrate in-situ inspection equipment to specific materials. The equipment that makes the defects can be efficiently and inexpensively 3D printed. This technique is currently being used to successfully calibrate NASA's in situ inspection system for their AFP equipment. AFP is experiencing increasing adoption in aerospace, automotive, and other industries that leverage large-scale advanced composite components. NASA's new AFP calibration system could be very useful to companies that develop and manufacture AFP machines or AFP machine inspection equipment to improve the quality of their products in a provable manner. Furthermore, users of AFP machines may find value in the tool for creating their own calibration standards.
Photo of six different apparatuses for creating overlap/gap defects of different widths and lengths.  Image credit: NASA
Benefits
  • Precise and repeatable: NASA's new calibration apparatus can quickly design and make predictable and repeatable gap-and-overlap defects when employing AFP that can be used to certify and calibrate in situ inspection systems
  • Efficient: using the new system, an entire build that has well-characterized defects at known locations can be manufactured quickly and reliably
  • Low-cost: the calibration apparatus can be manufactured with extremely low-cost due to 3D-printability

Applications
  • Aerospace and Aviation
  • Automotive
  • Commercial Space
  • Composites
  • Marine
  • Unmanned Vehicles
Technology Details

manufacturing
LAR-TOPS-339
LAR-19771-1
11,685,129
Similar Results
helicopter
Method and Means to Analyze Thermographic Data Acquired During Automated Fiber Placement
The latent heat of the item under fabrication is used to create a thermal image of a just completed tape bond. The image is then analyzed to detect anomalies in real-time. The defect data can be used in a feedback process to guide the bonding operation and tag the defect location for subsequent inspection. Image processing is a key element of the successfully implementing the process. The image process technique used not only reduces processing resources (such as CPU usage, memory, etc.), but also allows for a number of standard time-based analysis algorithms, typical of flash thermography, to be applied to the data (the reconstructed sequence).
Automated Tow/Tape Placement System
This NASA invention enables several benefits that mitigate limitations associated with conventional ATP systems, including the following: (1) avoids obtuse head rotation or cross-tool translation when laying adjunct tape plies, (2) simultaneously places tape on both sides of a part via two robots, (3) eliminates external anchoring frame requirements, and (4) translates parts during build while also translating the applicator head. The ability to perform simultaneous layup on opposite sides of the component, as well as reduction of head rotation reversal during bidirectional tape layup, offers increased layup speed. The invention offers increased placement accuracy as a result of reduced movement between tape layup operations and the eliminated need for an anchoring frame (facilitated by simultaneous pressure extrusion of prepreg by the two robots). NASAs automated tow/tape placement system has two key unique features: the use of two opposed ATP cars to enable a tool-less process, and an on-the-fly reversal tape/tow laydown tooling head. The system uses two opposing (i.e., underside-to-underside) ATP cars, and can build parts vertically, horizontally, or at any other angle, depending on the workspace available. The ATP die wheels can be reversed or turned to draw the composite back and forth at different angles to create a layer-by-layer composite structure. Both cars can dispense TPC tape thus, either car can function as an opposing tool surface while the other performs prepreg lay-up. For structures that do not vary in thickness, both cars can lay tape at the same time doubling layup speed. Current ATP robots must rotate the large tooling head, or traverse panels without layering tape to achieve bidirectional layup, where each additional movement introduces alignment error. To increase layup rate while simultaneously minimizing misalignment, NASAs system incorporates an on-the-fly reversal tape/tow laydown tooling head to enable efficient bidirectional layup.
Vertically Aligned Carbon Nanotubes
Formation of the inventive polymer composite matrix begins by growing carbon nanotubes directly on a veil substrate. The carbon nanotubes are grown from both sides of a non woven carbon fiber mat. The carbon nanotubes can be single or multi walled and can be grown to predetermined lengths. The veiled substrate is positioned between carbon fiber/ polymer prepreg layers such that the carbon nanotubes protrude into the reinforcement layers. The polymer composite matrix formed following curing of the resin exhibits improved interlaminar strength, fracture toughness and impact resistance. Because of the thinness of the veil layer, electricity can pass from conductive carbon nanotubes on one side of the veil to conductive carbon nanotubes on the other side of the veil. Electricity can also pass between two veils intercalated into the same reinforcement layer when the length of the nanotubes is sufficiently long enough to provide overlap within the reinforcement layers.
Fiber Optic Sensing for Life Cycle Monitoring
Guided wave-based system for cure monitoring of composites using piezoelectric discs and fiber Bragg gratings (FBGs)
This system connects the properties of the guided waves to the phase changes of a composite part. The system measures temperature, strain, and guided waves during cure almost simultaneously. During life-cycle monitoring, it is feasible to use embedded fiber optic sensors for both load monitoring because of the ability to measure strain and damage detection because of the ability to record ultrasonic guided waves. The guided wave system is incorporated directly into standard curing equipment and technique. It has also been tested and works with flat panels as well as complex structures. The technology would be valuable to manufacturers of aircraft parts (fuselage, wing and other sections), marine hull sections, high speed rail sections, automotive parts and perhaps even building parts. One major application that exists presently, is the fabrication of fuselage and wing sections for aircraft where carbon fiber composite sections are used such as Boeing's 787 Dreamliner.
Medical instrument
Highly Accurate Position Detection and Shape Sensing with Fiber Optics
NASA's novel method was developed to more accurately measure the position and shape of optical fibers. Multi-core optical fibers contain multiple light-guiding cores arranged symmetrically. Sensors, such as FBGs, are embedded into each of the cores (Figure 1). Such an arrangement allows for the measurement of strain in each core of the fiber at specific axial locations along the fiber. When a multi-core fiber is subjected to bending, the strain imposed in each core relative to one another is used to provide position information (Figure 2). In the past, shape-sensing measurements using optical fibers estimated bending at sequential points along the fiber, and the resulting measurement had many discontinuities and errors. The combination of these errors resulted in a very poor indication of actual fiber position in three-dimensional space. NASA's patent-pending algorithms and apparatus incorporate not only fiber bending measurements, but fiber twisting measurements as well, to eliminate previous sources of error. The uniqueness of the algorithm is in how the curvature, bend-direction, and twisting information of the fiber are all brought together to obtain a highly accurate 3-D location and shape characterization. The new methods have been demonstrated to significantly improve the accuracy of multi-core fiber optic shape sensors.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo