Functionally Graded Metal-Metal Composite Structures

Materials and Coatings
Functionally Graded Metal-Metal Composite Structures (LAR-TOPS-191)
Novel process to create unique metallic alloy compositions
Overview
NASA Langley Research Center has developed a functionally graded metal-metal composite structure. The structure is created using a method that avoids deleterious reactions between the different metal constituents, as would be observed via conventional melt processing. The results are unique alloy compositions and arrangements not typically available through conventional processing routes.

The Technology
In order to improve the properties of monolithic metallic materials, alloying additions are made that create secondary phases and/or precipitate structures. These improvements must occur during melt solidification and are governed by the thermodynamics of the process. That is, optimizing the metallic alloy is possible only as much as thermodynamics allow. Developing novel methods to combine metallic compositions/alloys into a fully dense material is of interest to create materials with novel property combinations not available with monolithic alloys.While various approaches for layering two-dimensional materials exist, their capabilities are typically limited and non-isotropic. Further, while three-dimensional composites may be formed with conventional powder metallurgy processes, it is generally very difficult to control the arrangement of the phases, for example due to randomness created by mixing powders. This invention is method for creating a multiple alloy composite structures by forming a three-dimensional arrangement of a first alloy composition, in which the three-dimensional arrangement has a substantially open and continuous porosity. The three-dimensional arrangement of the first alloy composition is infused with at least a second alloy composition. The three-dimensional arrangement is then consolidated into a fully dense solid structure.
Proof-of-concept with Ti-6Al-4V AM-fabricated structure
Benefits
  • Full control over the macroscopic 3D arrangement of phases in a multi-component alloy system.
  • Capability to combine alloys that generally aren't compatible, at least through conventional melt processing operations.

Applications
  • Pressure vessels
  • Tensile fatigue critical structures
  • Ballistic impact resistant structures
  • Metallic glass alloys
  • Acoustically tailored metallic alloys
Technology Details

Materials and Coatings
LAR-TOPS-191
LAR-17990-1
9,764,386
Similar Results
MMC blade stiffener bonded to aluminum plate during hot rolling.
In-Situ Selective Reinforcement of Near-Net-Shape Formed Structures
This innovation allows the incorporation of metal matrix composite reinforcing material into a metallic structure as part of the structures fabrication process. It does not require secondary processing that may affect the structures mechanical properties. It does not require bonding agents that would limit the benefits of the reinforcing material. It adds reinforcement to only the specific regions of the structure that need enhanced strength, stiffness, and/or damage tolerance, thereby allowing for more efficient design and reduction in structural weight.
Airplane during take off
Plasma Deposition of Metal in Composite Panels
NASA's plasma-deposition process provides the ability to tailor various properties while designing functional parts by selecting specific materials and processing parameters to meet the end goal. Specifically, the plasma process deposits metal particles that are heated as they travel axially at low velocity through an inert gas plasma. The accelerated powder particles become molten, strike the substrate fabric (uniaxial, biaxial, and multiaxial) and rapidly solidify, imparting very little heat to the substrate while forming a metal-to-fiber bond, as well as a metal-to-metal bond. The resulting metal-coated fabric is porous, so the polymer matrix can pass through the product precursor during the infusion process. The amount of metal deposited can be controlled, as can the number of plies of fabric that are ultimately stacked to produce the preform for the polymer matrix infusion process. A variety of infusion processes can be utilized to prepare the FML, including resin transfer molding (RTM), resin film infusion (RFI), and vacuum-assisted resin transfer molding (VARTM). The tailorable aspect of the process allows for specific product design. By varying the combination of metal particle, fiber, fabric type, metal layer thickness, fabric direction, number of layers, polymer matrix resin, infusion process, and cure conditions, the characteristics of the final part can meet the needs of various applications.
Fabrication of Fiber-Metal Laminates with Non-Autoclave Processes
Fabrication of Fiber-Metal Laminates with Non-Autoclave Processes
The FMLs resulting from the NASA process have similar properties to traditionally produced metal/composite hybrid laminates including, as compared to either the composite or metal only structures, improved load carrying capability, lighter weight, improved stiffness, improved impact resistance and damage tolerance, and improved permeation resistance. The NASA process can be applied to various FML types, including GLARE (glass, aluminum, epoxy), and TIGR (titanium, graphite). Typical manufacturing processes are costly and complex shapes are hard to produce, whereby the NASA process enables use of these kinds of laminates without an autoclave or press, thus increasing the size that can be produced and decreasing the cost. The resin pathways in the foils enable connection between the plies that can improve the interlaminar strength of the final part. Functionally the NASA process creates resin columns in the transverse direction of the plies. NASA is working to optimize the final properties by varying the size and distribution of the pathways.
Friction Stir Welding Apparatus
Abnormal Grain Growth Suppression in Aluminum Alloys
Heat treatment of the deformed welds is desirable in order to restore the properties of the alloy negatively affected in the weld region. In these alloys, abnormal grain growth frequently occurs in friction stir welds during solution heat treatment, and is known to degrade key materials properties, such as strength, ductility and toughness. The innovation of inserting an intermediate annealing step covered here reduces abnormal grain growth during post-welding heat treatment, thereby allowing optimum mechanical properties. This is important where Al-Li alloys (and other heat treatable alloys) are friction stir welded followed by deformation processing and high performance, high reliability structural components are required for aerospace vehicles.
TOP Front Image
Novel Overhang Support Designs for Powder-Based Electron Beam Additive Manufacturing (EBAM)
EBAM technology is capable of making full-density, functional metallic components for numerous engineering applications; the technology is particularly advantageous in the aerospace, automotive, and biomedical industries where high-value, low-volume, custom-design productions are required. A key challenge in EBAM is overcoming deformation of overhangs that are the result of severe thermal gradients generated by the poor thermal conductivity of metallic powders used in the fabrication process. Conventional support structures (Figure 1a) address the deformation challenge; however, they are bonded to the component and need to be removed in post- processing using a mechanical tool. This process is laborious, time consuming, and degrades the surface quality of the product. The invented support design (Figure 1b) fabricates a support underneath an overhang by building the support up from the build plate and placing a support surface underneath an overhang with a certain gap (no contact with overhang). The technology deposits one or more layers of un-melted metallic powder in an elongate gap between an upper horizontal surface of the support structure and a lower surface of the overhang geometry. The support structure acts as a heat sink to enhance heat transfer and reduce the temperature and thermal gradients. Because the support structure is not connected to the part, the support structure can be removed freely without any post-processing step. Future work will compare experimental data with simulation results in order to validate process models as well as to study process parameter effects on the thermal characteristics of the EBAM process.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo