Laser Linear Frequency Modulation System
optics
Laser Linear Frequency Modulation System (LAR-TOPS-95)
Improved accuracy in light detection and ranging and other optical measurement arrays
Overview
NASA's Langley Research Center has made a breakthrough improvement in laser frequency modulation. Frequency modulation technology has been used for surface mapping and measurement in sonar, radar, and time-off-light laser technologies for decades. Although adequate, the accuracy of distance measurements made by these technologies can be improved by using a high-frequency triangular-waveform laser instead of a sine waveform or
lower frequency radio or microwaves. This new system generates a triangular modulation waveform with improved linearity that makes possible precision laser radar (light detection and ranging [lidar]) for a variety of applications.
The Technology
For decades, frequency modulation has been used to generate chirps, the signals produced and interpreted by sonar and radar systems. Traditionally, a radio or microwave signal is transmitted toward the target and reflected back to a detector, which records the time elapsed and calculates the targets distance. Reflected signals can be heterodyned (combined) with output signals to determine the Doppler frequency shift and the target velocity. Accuracy of these systems can be enhanced by increasing the bandwidth of the chirp, but noise generated during heterodyning at high frequencies decreases the signal-to-noise ratio, increasing measurement error.
Previous attempts at laser frequency modulation that relied on adjusting the laser cavity length have resulted in only sine wave or imperfect triangle waveforms. Heterodyning of imperfect, non-linear waveforms or sine waveforms will significantly degrade the effective signal-to-noise ratio, making such systems impractical. In contrast, the current technology produces a single, high-frequency laser that is passed to an electro-optical modulator, which generates a series of harmonics. This range of frequencies is then passed through a band-pass optical filter so the desired harmonic frequency can be
isolated and directed toward the target. By modulating the electrical signal applied to the electro-optical modulator, a near perfect triangular waveform laser beam can be produced. Transmission and detection of this highly linear triangular waveform facilitates optical heterodyning for the calculation of precise frequency and phase shifts between the output and reflected signals with a high signal-to-noise ratio. By combining this information with the time elapsed, the location and velocity of the target can be determined to within 1 mm or 1 mm/s.
Benefits
- Precise measurement of target distance and speed to 1 mm and 1 mm/s
- Ability to measure air velocity, ground velocity, target distance and velocity, aircraft altitude, angle of attack, and atmospheric wind vector in one system
- More accurate and reliable than current pitot-tube aircraft instrumentation that can ice up and requires frequent calibration
- Order of magnitude improvement in accuracy over time-of-flight laser pulse systems, and multiple orders of magnitude improvement as compared to radar systems for distance and velocity measurements
- Generation of a laser frequency modulation triangular waveform with improved linearity
Applications
- Space - Spacecraft landing and docking, planet topography measurement
- Manufacturing and construction - Precision alignment of large structures
- Robotics - Movement accuracy and maneuverability in confined spaces
- Aerospace - Replacement of pitot-static instrumentation systems for air velocity, ground velocity, altitude, and attitude measurements; target ranging, and 3-D visualization of structures and surfaces
- Surveillance and security - Movement detection and target visualization
- Military - Ground and target imaging
- Spectroscopy - Molecule identification
Similar Results
Pulsed 2-Micron Laser Transmitter
The new NASA LaRC Pulsed 2-Micron Laser Transmitter for Coherent 3-D Doppler Wind Lidar Systems is an innovative concept and architecture based on a Tm:Fiber laser end-pumped Ho:YAG laser transmitter. This transmitter meets the requirements for space-based coherent Doppler wind lidar while reducing the mission failure risks. A key advantage of this YAG based transmitter technology includes the fact that the design is based on mature and low-risk space-qualified YAG host crystal. The transmitter operates at a 2096 nm wavelength using Ho:YAG, resulting in high atmospheric transmission (>99%), versus a transmitter operating at 2053 nm using co- doped Tm:Ho:LuLiF, which suffers limited transmission (90%) due to water vapor interference. In-band pumping through Tm:Fiber pump Ho:YAG architecture offers lower quantum defect from 1908 to 2096 nm (9.1%) compared to traditionally used co-doped Tm:Ho:LuLiF of 792 to 2051 nm (61%). The transmitter has an efficient pump compared to LuLF, since YAG has 27% higher pump absorption and 52% lower reabsorption of the emitted 2-micron, resulting in higher efficiency and lower heat load. Being isotropic, YAG is amenable for spatial-hole burning mitigation which supports linear cavity architecture without compromising injection seeding quality. This attribute is important in designing a compact, stable, high seeding efficiency laser. A folded linear cavity for long pulse (>200 ns), transform limited line-width (2.2 MHz) and high beam quality (M2 = 1.04) - the most critical parameters for coherent detection - are easier to achieve using YAG compared to LuLF. Lower heat load results in high repetition rate (>300 Hz) operation, which allows higher probability of wind measurements through broken clouds, off clouds, and below clouds, thus reducing errors and increasing science data product quantity and quality.
More Reliable Doppler Lidar for Autonomous Navigation
The NDL uses homodyne detection to obtain changes in signal frequency caused by a target of interest. Frequency associated with each segment of the modulated waveform collected by the instrument is positive or negative, depending on the relative range and direction of motion between the NDL and the target. Homodyne detection offers a direct measurement of signal frequency changes however only the absolute values of the frequencies are measured, therefore additional information is necessary to determine positive or negative sign of the detected frequencies. The three segmented waveform, as opposed to conventional two-segmented ones, allows for resolving the frequency sign ambiguity. In a practical system, there are times when one or more of the three frequencies are not available during a measurement. For these cases, knowledge of the relative positions of the frequency sideband components is used to predict direction of the Doppler shift and sign, and thus make correct range and velocity measurements. This algorithm provides estimates to the sign of the intermediate frequencies. The instrument operates continuously in real time, producing independent range and velocity measurements by each line of sight used to take the measurement. In case of loss of one of the three frequencies, past measurements of range and velocity are used by the algorithm to provide estimates of the expected new range and velocity measurement. These estimates are obtained by applying an estimation filter to past measurements. These estimates are used during signal loss to reduce uncertainty in the sign of the frequencies measured once signals are re-established, and never to replace value of a measurement.
Receiver for Long-distance, Low-backscatter LiDAR
The NASA receiver is specifically designed for use in coherent LiDAR systems that leverage high-energy (i.e., > 1mJ) fiber laser transmitters. Within the receiver, an outgoing laser pulse from the high-energy laser transmitter is precisely manipulated using robust dielectric and coated optics including mirrors, waveplates, a beamsplitter, and a beam expander. These components appropriately condition and direct the high-energy light out of the instrument to the atmosphere for measurement. Lower energy atmospheric backscatter that returns to the system is captured, manipulated, and directed using several of the previously noted high-energy compatible bulk optics. The beam splitter redirects the return signal to mirrors and a waveplate ahead of a mode-matching component that couples the signal to a fiber optic cable that is routed to a 50/50 coupler photodetector. The receiver’s hybrid optic design capitalizes on the advantages of both high-energy bulk optics and fiber optics, resulting in order-of-magnitude enhancement in performance, enhanced functionality, and increased flexibility that make it ideal for long-distance or low-backscatter LiDAR applications.
The related patent is now available to license. Please note that NASA does not manufacturer products itself for commercial sale.
Recirculating Advanced Coupled-cavity Etalon Receiver (RACER)
Advanced Coupled-cavity Etalon (ACE) significantly improves both in-band transmission and out-of-band rejection. In some cases, 12% more light is transmitted inside the passband and >3x more light is rejected outside the passband. Incorporating ACE into the recirculating etalon receiver (RER) improves performance significantly. ACE increases the wavelength resolution and enables closer channel spacing resulting in a very efficient, high resolution spectrometer. RACER has both high resolution and a high photon efficiency which allows flexibility for trading different combinations of reduced cross-talk and closer channel spacing.
Real-Time LiDAR Signal Processing FPGA Modules
The developed FPGA modules discern time-of-flight of laser pulses for LiDAR applications through the correlation of a Gaussian pulse with a discretely sampled waveform from the LiDAR receiver. For GRSSLi, up to eight cross-correlation engines were instantiated within a FPGA to process the discretely sampled transmit, receive pulses from the LiDAR receiver, and ultimately measure the time-of-flight of laser pulses at 20-picosecond resolution. Engine number is limited only by the resources within the FPGA fabric, and is configurable with a constant. Thus, potential time-of-flight measurement rates could go well beyond the 200-KHz mark required by GRSSLi. Additionally, the engines have been designed in an extremely efficient manner and utilize the least amount of FPGA resources possible.