Real-Time Tracking System

communications
Real-Time Tracking System (MSC-TOPS-32)
Pinpointing emergency and military personnel in remote environments
Overview
A real-time locating system (RTLS) developed at the Johnson Space Center uses ultra-wideband (UWB) radio frequency (RF) signals for tracking and reporting the position of transmitter-equipped people and objects. The technology has 100 to 1,000 times finer granularity than conventional narrowband RF RTLS systems and achieves a tracking resolution of less than 1 percent of the range (tested up to 3,500 feet). The technology has a number of commercial applications including long-range tracking of emergency, military, and mining personnel in limited access or hostile environments where global positioning systems are not reliable. This method combines the advantages of accurate Time Difference of Arrival (TDOA) information achieved using UWB technology with the geometric advantages of two-cluster tracking to provide accurate location information at long ranges. This NASA Technology is available for your company to license and develop into a commercial product. NASA does not manufacture products for commercial sale.

The Technology
The innovation builds upon conventional UWB hardware by incorporating tracking methodology and algorithms in addition to external amplifiers for signal boost. The tracking methodology is a triangulation calculation consisting of Angle of Arrival (AOA) and Time Difference of Arrival (TDOA) using a cross-correlation peak detection method. By directly estimating TDOA information from UWB pulses, the method achieves the high temporal resolution (on the order of picoseconds) needed to measure AOA with extreme precision. The system uses a PC to synchronize and process data in real time from two receivers, or clusters, to display the position of the transmitter-equipped person or object. The interface software enables the PC to access the two data sets simultaneously through separate sockets. In the data collection process, data segments from each receiver are interleaved with those from the other receiver in chronological order of collection. Within the PC, the data segments are stored in a separate buffer; therefore, the contents of the buffers are representations of the same UWB pulse waveform arriving at the two receivers at approximately the same time. This data synchronization provides the separate and simultaneous collection of waveform data that the tracking algorithm requires for accurate real-time tracking.
Real-Time Tracking System The technology has applications in both the mining industry and on the battlefield.
Benefits
  • High performance - operates in proximity to other radio communication systems
  • High resolution - offers high temporal resolution (on the order of picoseconds)
  • Accurate - precise measurements of propagation time while transmitting data
  • Scalable - offers ability to increase system range, with additional cells
  • Dual use - simultaneous communication channel and precise locating capabilities

Applications
  • Aerospace rovers, robots and astronauts on exploratory missions
  • Emergency workers in limited access areas where GPS is not reliable
  • Military personnel and equipment on battlefields and in other hostile environments
  • Mining industry to locate and communicate with underground personnel
  • Oil companies for use in drilling operations
  • High-value inventory tracking industry
Technology Details

communications
MSC-TOPS-32
MSC-24184-1
8116350
Similar Results
Beamforming RFID Retroreflector technology being demonstrated.
RFID Tag for Long Range and Wide Coverage Capabilities
The RFID Tag with Long Range and Wide Coverage Capabilities technology allows a RFID tag to direct a RFID reader beam signal back in the direction of arrival. This technology requires no added power to provide telemetry for long range readers by using multiple beams instead of one narrow beam signal. Each of the predetermined number of beams is typically associated with a unique identification number to derive bearing information. This innovation is suited for IC-based RFID tags as well as Surface Acoustics Wave (SAW) tags, which are useful for extreme environments. The technology improves the ability to obtain telemetry (quantity, location, or sensor information) without GPS over a distant range. When the tag reports its identification, it also provides angular information to the source, which makes this technology useful for navigation and mapping applications. Because the technology provides an estimated angle between the signal antenna and the surface of each tag, the technology is able to triangulate the position of a mobile item identified with a RFID tag. The same innovation can be integrated to a RFID reader in order to enhance its range and distribute power to passive tags. The innovation has commercial applications in construction, oil and gas, seaport/harbor management, Internet of Things (IoT) and many more industries.
Wearable RFID Sensor Tags Yield Extended Operational Times
This technology exploits the inherently passive nature of RFID to approximate the services provided by traditional active Internet of Things (IOT) protocols like ZigBee and Bluetooth. A novel store-and-forward overlay on COTS RFID protocols allows an RFID active tags to transit through an ecosystem of RFID interrogators, exploiting contact opportunities as they arise and quietly transfers sensor readings at nearly no power cost to the RFID active tag. Specific intelligence built into both the interrogator and the tag leverages the RFID tag user memory (UM) as a stand-in IOT interface. The tag operates by sampling data into timestamped packets and loads them into tag memory. When an interrogator in the ecosystem realizes that a tag is in view and that there is unrecovered data on the tag, it takes custody of the sensor data packet and offloads the data into a database. A smart scheduler reads from the population of interrogators and schedules data transfers for specific tags when an interrogator can seed the custody transfer process for the data packets. NASA has produced working prototypes of wearables, worn by the crew aboard the International Space Station, that reports humidity, temperature and CO2 readings. In one estimate, the battery life is on pace to last an estimated nine years. The Low-Power RFID to Collect and Store Data From Many Moving Wearable Sensors is a technology readiness level (TRL) 6 (system/subsystem prototype demonstration in a relevant environment). The innovation is now available for your company to license and develop into a commercial product. Please note that NASA does not manufacture products itself for commercial sale.
The Navigator GPS Receiver
The Navigator GPS Receiver
To enable it to acquire GPS signals very quickly and also track weak signals, the radiation-hardened Navigator receiver utilizes a bank of hardware correlators, a ColdFire microprocessor, and a specialized fast acquisition module (see figure 1). The hardware is implemented in VHSIC Hardware Description Language (VHDL) to target radiation-hardened Field Programmable Gate Arrays (FPGA) rather than Application-Specific Integrated Circuits (ASIC), in order to maintain flexibility for growth and design modifications. The Navigator was designed to operate autonomously to enable the use of GPS for onboard navigation in high altitude space missions. With the exception of GPS signals, Navigator requires no external data (e.g., current time estimate, recent GPS almanac, or converged navigation filter estimate of the receiver dynamics). By double buffering data up front in 1ms blocks, data can be processed as it is acquired. A discrete Fourier transform (DFT) is used to calculate the 1ms correlations, significantly reducing computing time. Computational efficiency is optimized and tradeoffs among sampling rate, data format, and data-path bit rate are carefully weighed in order to increase performance of the algorithm. In addition, the Navigators hardware-independent receiver software includes both a hardware interface to perform low-level functions as well as basic navigation. Onboard orbit determination and accurate state estimation/propagation during periods with no GPS access are accomplished by integration with the GPS Enhanced Onboard Navigation System (GEONS). Exploiting the properties of Fourier transform in a massively parallel search for the GSP signal, the Navigator has been tested and proven capable of acquiring signals at 25dB-Hz and below.
Passive Smart Container
Passive Smart Container
Passive Smart Container system comprises four major components: RFID circuits embedded in or around the container, an antenna and RF distribution system, and an interrogator/reader. The system uses passive RFID circuits placed on a bulk item container to track consumption and quantify items as the items are removed, added or replaced in the container. The antenna is strategically integrated with the lid or elsewhere in or around the container and is constantly coupling RFID signals to/from the RFID circuits. The circuits reply with information regarding the fill level in the container. A processor connected to the reader/interrogator can infer the fill level according to which RFID circuits respond and the magnitude and phase of the returned signals. The technology is compatible with the EPCglobal Class-1 Generation-2 RFID standard. This setup can be modified to track all kinds of items, large and small, making this technology suitable and applicable to an array of commercial fields. RFID is a disruptive technology that has made a large impact on several industries, especially in supply chain and asset management. Passive Smart Container is well positioned to tap into this growing market. Its ability to account for discrete items as well as liquids and bulk goods that were deemed impossible or impractical to tag makes this technology relevant for an array of applications and industries.
Person taking inventory
Smart Enclosure using RFID for Inventory Tracking
The smart enclosure innovation employs traditional RFID cavities, resonators, and filters to provide standing electromagnetic waves within the enclosed volume in order to provide a pervasive field distribution of energy. A high level of read accuracy is achieved by using the contained electromagnetic field levels within the smart enclosure. With this method, more item level tags are successfully identified compared to approaches in which the items are radiated by an incident plane wave. The use of contained electromagnetic fields reduces the cost of the tag antenna; making it cost-effective to tag smaller items. RFID-enabled conductive enclosures have been previously developed, but did not employ specific cavity-design techniques to optimize performance within the enclosure. Also, specific cavity feed approaches provide much better distribution of fields for higher read accuracy. This technology does not restrict the enclosure surface to rectangular or cylindrical shapes; other enclosure forms can also be used. For example, the technology has been demonstrated in textiles such as duffle bags and backpacks. Potential commercial applications include inventory tracking for containers such as waste receptacles, storage containers, and conveyor belts used in grocery checkout stations.
Stay up to date, follow NASA's Technology Transfer Program on:
facebook twitter linkedin youtube
Facebook Logo Twitter Logo Linkedin Logo Youtube Logo